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Interatomic Potentials for Silicon Structural Energies
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%e develop two- and three-body classical interatomic potentials that model structural energies
for silicon. These potentials provide a global fit to a data base of first-principles calculations of the
energy for bulk and surface silicon structures which spans a wide range of atomic coordinations and
bonding geometries. This is accomplished by use of a new "separable" form for the three-body po-
tential that reduces the three-body energy to a product of two-body sums and leads to computations
of the energy and atomic forces in n steps as opposed to n for a general three-body potential.

PACS numbers: 61.50.Lt, 68.40. +e, 71,45.Nt

There is a great deal of current interest in the
computer-based microscopic description of the struc-
ture and properties of materials. First-principles
quantum-mechanical calculations, for example, have
recently enjoyed great success in predicting the proper-
ties of simple structures. ' There are many problems of
great interest, however, for which molecular dynamics
or simulated annealing studies are required, involving
as many as 102—103 atoms moving through 10 —106
configurations. These include melting, crystal growth
and epitaxy, laser annealing, defect motion and ma-
terials strength, amorphous structures, and surface and
interface reconstruction. The computational complexi-
ty of quantum-mechanical energies and forces pre-
cludes their use for such purposes for the foreseeable
future. For simple systems such as rare-gas solids and
liquids a sum of classical pair potentials yields accept-
ably accurate energies in acceptable computational
times. Of necessity, two-body models have been ex-
tended to materials where their accuracy is highly
questionable.

For covalent materials such as Si, pair potentials
alone are inadequate, since the equilibrium diamond
lattice is unstable relative to close-packed structures
without three-body forces. 2 In fact, a three-body
model fitted to small distortions of the diamond struc-
ture3 has been used extensively to compute energies of
complex Si structures, sometimes far beyond the range
of its validity. Our goal here is to explore the extent to
which a classical potential model for a covalent materi-
al can succeed in providing a global description of its
structural energies. For this purpose, we exploit the
huge computational effort that has produced accurate
quantum-mechanical energies for simple Si structures
spanning a wide range of atomic coordinations, bond
lengths, and bond angles. '4 While only a few of these
structures have low enough energies to be experimen-
tally accessible in extended form, their features may
occur as local distortions or dynamic intermediates as-
sociated with complex structures or processes. There
are neither a priori arguments nor empirical tests to
suggest that a classical model can accomplish such a
global fit without arbitrarily many multiatom poten-

tials. The computational complexity of such a model
would render it impractical, and so we have confined
our explorations to two- and three-body potentials.
We find that it is possible to achieve excellent qualita-
tive separation of structural groups, and quantitative
accuracy for individual structures which should be ac-
ceptable for many purposes. This represents a signifi-
cant step towards the performance of accurate simula-
tions of technologically important semiconductor ma-
terials.

We have also achieved a major reduction in the
computational complexity of the three-body model
which is a considerable aid for simulation purposes.
We introduce a new "separable" form for the poten-
tial which permits the energy to be calculated in n2

computational steps instead of the n3 steps generally
required, where n is the number of interacting atoms.

Our two and three-body model is defined by the
following expression for the structural energy:

E= —,
' X V2(1, 2) + X V3(1, 2, 3), (1)

1, 2 1, 2, 3

where primes indicate that all summation indices are
distinct. Any three-body potential V3 (1,2, 3) may be
expressed as a function of two lengths ri2, ri3 and the
included angle Ht. This potential is symmetrized over
the three particles in the sums in (1). We can expand
the angular dependence of this potential in the com-
plete set of Legendre polynomials without loss of gen-
erality. The coefficients in this expansion are func-
tions FI of bond lengths multiplied by linear coeffi-
cients CI,

V3(fi2 l]3 0]) XICIFI(fi2 I i3)P((costi). (2)

Our key simplification is to assume that the func-
tions FI are separable and symmetric products of func-
tions @i of each bond length. This simplification can
be motivated by the following physical picture of
three-body interactions: Bonding interactions with
atom 2 "tie up" some of the atomic orbitals of atom 1.
The constrained atom 1 has modified bonding interac-
tions with atom 3. The constraints must be cylindrical-
ly symmetric about the 1-2 axis, and have strengths
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which are functions of r12. The constrained interac-
tions are functions of r13, and the simplest way of
representing the symmetry of the system is to make
the "constraining" and "interacting" functions equal
for each t. This leads to the symmetric separable form

V3(r12 r13 ~l)

= X1C141(r12) 41(r13)Pi(cos&1) . (3)

The addition theorem for spherical harmonics now
reduces the three-body energy to the expectation value
of a diagonal matrix between vectors C

&
that are sim-

ple two-body sums, i.e. ,
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The 4ij vectors represent the moments of the struc-
ture around atom j. Equation (4) is not the correct
sum to substitute in (1) because we have ignored the
"prime" condition on the summation indices, 2&3.
The correction introduces a modification of the two-
body interaction,

I

~3("12 "13 ~1)
2, 3

X ~3(r12 r13 ~1) /f3(r12)
2, 3

—3.75

—4.25

where

f3(r) = X1&(@12(r)

Previous work with classical models for Si beyond
the restricted Keating model3 includes that of Stillinger
and Weber (SW), and Pearson, Takai, Halicioglu, and
»11«(PTHT). 6 The three-body potentials used by
SW are separable (although the separability was not
utilized in their work), and have a Keating3 angular
form ( —', Co= C1= C2', C3, C4, . . .=0). The poten-
tials were confined within a very small cutoff radius of
3.78 A. Their nine parameters were adjusted to fit the
bond length, cohesive energy, and melting tempera-
ture of bulk diamond Si, and satisfy other qualitative
criteria. 5 Alternatively, PTHT6 used the nonseparable
Axilrod-Teller three-body potential which is based on
the generalization of van der Waals fluctuating-dipole
forces for three particles. These potentials were long
ranged with algebraic decays [ V3 (r ) = r 9]. The
three-parameter PTHT potential was obtained through
an average fit to the bond lengths and cohesive ener-
gies of bulk diamond Si and molecular Si&.
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FIG. 1. Energies for simple silicon structures as a func-
tion of atomic volume. SW potentials are from Ref. 5, and
PTHT from Ref. 6. Wurtzite could not be distinguished
from diamond in (c) and (d).

The quantum-mechanical Si data base includes ener-
gies of diamond, wurtzite, the high-pressure P-tin and
simple hexagonal structures, and simple hypothetical
Si structures'4 8 as shown in Fig. 1(a). To account for
bond breaking energies, we have added to the data
base our own linear augmented-plane-wave calcula-
tions for the energy of a four-layer Si(111) slab as a
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function of the positions of the outermost atomic
layers (Fig. 2). Because of symmetry, only moments

with certain values of the angular momentum l are
allowed for each structure, e.g. , the 1 = 0, 3, 4, 6, . . .
moments are allowed in diamond. The (111) slab is
the only structure in the above data base that permits
an 1= 1 moment and is therefore essential to the fit.

We have examined a few short-range, monotonic
functional forms for the three-body functions $ along
with similar functions for the two-body potential. We
were unable to find satisfactory fits with very short-
range functions of the type used by SW.5 Very general
functional forms for P& often led to unphysical solu-
tions that provided good fits but performed poorly on
test structures. Overall, our best results were obtained
with the family of simple exponentials, @,= e '. In
conjunction, we used generalized Morse two-body po-
tentials,

V2(r) =Ate ' +&2e

For our potential, the decays ni, A. t, and &2 of the radi-
al functions are nonlinear parameters, whereas the
coefficients Ci, At, and A2 are linear variables. The
parameters in the potential were least-squares fitted to
the data base energies over the entire range of atomic
volume spanned by each curve in Fig. 1. For the fit
we selected a subset of structures from Fig. 1 that con-
tained all of the angular momentum components up to
l = 6. We typically constrained the higher l's to a sin-
gle decay rate.

The results of our fit compare very well with the

quantum-mechanical energies for the Si(111) slab, as
shown in Fig. 2. Our global fit to the crystal structures
shown in Fig. 1(b), agrees with the quantum-
mechanical results of Fig. 1(a), to within an rms error
of 0.05 eV and displays the correct structural trends
over a large range of atomic volumes. The absolute
energies are plotted in Figs. 1 and 2. In Fig. 1(b), the
bcc and hexagonal-Si phases were test structures that
were not fitted. Hexagonal-phase Si is very close to
P-tin, as it should be.4 Wurtzite is higher in energy
than diamond-phase Si. The hcp phase is not as well
fitted as other phases and the simple cubic phase is
somewhat lower in energy than the quantum-
mechanical result. The first high-pressure phase is
correctly predicted to be P-tin. Our diamond-phase Si
has an equilibrium bond length of 2.32 A (experimen-
tally 2.351 A), but the nonlinear decay parameters
could be uniformly scaled to produce the experimental
bulk bond length if desired.

The parameters for our fitted potential are listed in
Table I. The solution is stable, remaining within the
same range of parameters when the weights or struc-
tures in the fitting data base are altered, or when the
number of three-body nonlinear parameters is altered
by 1. The coefficients in the angular expansion (CI)
decay uniformly, indicating the convergence of the
solution and a well-defined angular decomposition.
Further, the range of the potentials is comparable to
that of the atomic valence wave-function overlaps, in-
dicating a physical reasonableness in the overall fit.
Cutting off all r sums at 10 A only causes an error of
order 0.01 eV in the total energies.

The structural energies, from the previously ob-
tained two- and three-body Si potentials of SW5 are
plotted in Fig. 1(c) and in Fig. 2, whereas those from
the potentials of PTHT6 are shown in Fig. 1(d) and in
Fig. 2.9 Clearly from Figs. 1 and 2, the present poten-
tials compare with the quantum-mechanical results

TABLE I. The values of the parameters for the present
two- and three-body potentials. A. I and o, i, 0.2 are nonlinear
decay parameters; CI and 3 i,A2 are the linear coefficients.

A;, CI

(eV)

I l l l l I l l i 1 I

I 2 3
ATOM POSI T ION ( 0 0) )DEAL

Si (/11)

FIG. 2. Energy of a four-layer Si(111) slab. Starting from
the ideal (111) geometry the two outermost layers are
symmetrically displaced in the normal direction. The dis-
tance of either layer from the slab center is plotted. At 2.22
a.u. , the slab reduces to two graphitic atomic planes.

Two-body

Three-body

3.946 668
1.191 187
1.246 156
1.901 049
1.786959
1.786959
1.786 959
1.786 959
1.786 959

0.268 2936 x 105
—0.425 9863 x 10

0.9139775 x 10
0.1644013x 10'
0.958 0299 x 10
0.666 3147 x 104
0.398 7710x 104
0.204 6722 x 104
0.701 8867 x 10
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much better than previous work. The grouping of
structures into three energy classes and the values of
their equilibrium volumes are improved compared to
SW, and the compressibilities and energy differences
between the classes are improved compared to PTHT.

The three-body potential emerging from the fits has
(for rt2= r» = 2.35 A) a very weak dependence on the
angle for 90' (8~ 180', with a very shallow min-
imum at 0 =—110'—115'. There is a very strong repul-
sion between bonds for 0 ~ 70'. The two-body poten-
tial has a minimum at R = 2.77 A, with a depth of
E= —1.09 eV at the minimum. Clearly this pair po-
tential is inappropriate for the multiply bonded Si2 di-
mer. These properties of our two-body potential are
consistent with the work of Carlsson, Gelatt, and
Ehrenreich, ' who quite generally showed that pair po-
tentials in simple metals are significantly weaker than
the cohesive energy, and have a minimum at separa-

tions larger than the equilibrium bond length. Our at-
tempts to constrain our two-body potential to fit Si2
did not yield satisfactory fits to the structural energies.
We believe that a model which simultaneously fits
small clusters and extended systems must include N
body potentials beyond X= 3.

Further tests with the present potentials yield a va-
cancy formation energy of 4.82 eV in comparison with
the quantum-mechanical result of =4.5 eV." Sym-
metric dimers are found for a relaxed Si(100) surface,
with bond length =—2.50 A, and an energy gain of 1.22
eV/dimer relative to the ideal surface. The model is
too stiff relative to small distortions around the dia-
mond structure, with some photon frequencies 25% to
50'/0 too high.

Atomic forces, necessary for many purposes, can
also be obtained in n2 calculational steps. By differen-

!
tiation of (4) and use of suitable identities, the force
on atom k due to the three-body potential is

Fk = —XCI 2l 1 X X fI~(rkj) [C&g~+ ( —1)'C p]+cc.—4X CIX@1(rk,)
i j rkj rkj

In the above,

f, (r)= t)@((r) @I(~)
YI e, + I[(l+ m+1) / (l —m)' YI +te '~ —(l —m+1)'/ (l~ m)' Y& e''&]eeIm r f ™+I IJ

+2i(m sin8) YI~e& cosg[(—i+ m+1) /2(l —m)t/2YI

+ (l —m+1)' (l+ m)' YI te'~]e~j, (10)

where (r, 0, @) are the r spherical coordinates,
(e„ee,e&) are spherical unit vectors, and YI have ar-
guments 0, @. The force calculation requires a prior
computation of the C

&
vectors.

In conclusion, we have described a new "separable"
form for the three-body potential that leads to efficient
energy and force calculations. We have developed
two-body and separable three-body interatomic poten-
tials for Si which can interpolate among first-principles
energy calculations for both semiconducting and me-
tallic structures, and improve upon previous classical
Si models. Classical potentials such as the present one
may be extended to compound semiconductors, and
have a potentially wide range of applications in simula-
tions of materials properties.

We wish to thank W. A. Tiller for sending us a
prepublication copy of Ref. 6.
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