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Method of Averaging and the Quantum Anharmonic Oscillator
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The Krylov-Bogoliubov method of averaging is applied to the time-dependent quantum anhar-
monic oscillator. A regular perturbation expansion contains secular terms. The averaging approxi-
mation does not, and as a result has a validity over larger time intervals. A new variant of the usual
averaging transformation is used and rigorous error bounds are derived. Rigorous averaging
methods have been applied extensively to ordinary differential equations but our work appears to
be the first generalization to partial differential equations.
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The Krylov-Bogoliubov method of averaging is a
powerful perturbation procedure for ordinary differen-
tial equations which, unlike most other perturbation
techniques, allows for a rigorous estimate of the differ-
ence between the solution of an exact problem and an
approximate solution based on an averaged problem.
In this Letter, we generalize the method, complete
with error bounds, to the quantum anharmonic oscilla-
tor

i y' = Hy, y{0)= Ap.

Here the Hamiltonian 0= Hp+ 4 eq where Hp
= —,

' (@2+q2) is the harmonic-oscillator Hamiltonian
and the perturbation parameter, e, is a nonnegative
real number. A regular perturbation procedure,
tP (t) = wp(t) + ew

& (t) + w2(t;e ), applied to (1) gives
rise to a secular term in ~q. This gives incorrect quali-
tative behavior and limits the validity of ~p+ewy, as
an approximation to Q, to 0(1) time intervals. In
fact, it is easy to prove that II w2(t;e) II = 0(e ), but
only on 0 (1) time intervals. As we show, the method
of averaging provides an approximation Qt(t;e) to

which has no secular terms and satisfies
II lp(t) lpt(t ) II = 0 (e t ) 011 L2(R). Tllus I/Jt ts an
0(e ) approximation on 0(1) time intervals and an
0(e) approximation on 0(e ') time intervals. It has
the added feature that the 0 (e) term in the expansion
of the eigenvalues of 0 naturally appears in the ap-
proximation.

Averaging has been applied extensively to ordinary
differential equations, although its importance, with a
few exceptions, is just beginning to be appreciated in
the physics community. In the classical case for H
above, the equation of motion is the so-called Buffing
equation and the method is easily applied complete
with error bounds. To our surprise, we found no
rigorous work generalizing averaging to partial dif-
ferential equations.

We became interested in the extension to partial dif-
ferential equations in a problem involving the Hamil-
tonian

H= (2m) 'p'+ V( y,xz)

governing the motion of charged particles in perfect
crystals. Here V is the periodic crystal potential and z
is taken along a major crystal axis. Averaging has been
used in the classical case to discuss rigorously the
channeling problem of replacing V by its z average to
determine the motion of a particle with a large z
momentum. In our attempt to treat the quantum case
we ran into a problem and decided to try the above
anharmonic oscillator which is a widely used test case
for perturbation procedures. This Letter is the result
of that work.

Let 4 be the Hilbert space of functions f:R C
which are Lebesgue square integrable; then it is well
known that H and Hp are self-adjoint operators4 on A
where q is the multiplicative operator and p = —i d/dz.
The evolution of the wave function is governed by the
Schrodinger equation (1) and the unique solution of
Pp in the domain of self-adjointness of H is given by

y(t) = e ' 'yp. (2)
Here the exponential operator is a strongly continuous
one-parameter unitary group with generator —iH.

In order to put Eq. (1) in a form to apply the
method of averaging, we introduce the variation-of-
parameters transformation

Q(t) =e ' '@(t), (3)
where the exponential operator is the unitary group
with generator —iHp. If we use Eq. (1), the initial-
value problem for @ becomes

iy'=eA (t)@, P(0) = yp, (4)
where

(5)
Equation (4) is in a form for the method of averaging.
%'e now proceed to illustrate this method in a formal
way. This will give us a candidate for an approximate
solution of the original problem (1). Then we derive,
in a rigorous way, error bounds relating the approxi-
mate and exact solutions.

It is convenient to introduce the raising and lower-
ing operators

a = —,
' J2(q+ip), at = —,

' J2(q —ip). (6)
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Equation (5) can then be rewritten as

A (t) = —'[e "a +4e "aHpa +4e "a Hpa +e "a }+, H —+—'

t v' = eA v, v(0) = yp. (9)

Since 3 is a self-adjoint operator on 8 the solution of
(9) is

v(t) = e
n =0

(10)

~here the X„are the Hermite functions which form an
orthonormal basis for A,

H0X„=E„X„, E„=n + —,',

and the pp„are the coordinates of the initial data. No-
tice that eP„gives the 0 (e) correction to the
harmonic-oscillator eigenvalues and it would be in-
teresting to compare this with current operator ap-
proaches to the approximating of eigenvalues.

The method of averaging is a transformation pro-
cedure to quantify the relation between solutions of
(9) and (4). The usual way to proceed is to look for a
near-identity transformation @(t) = u (t) + eP (t) u (t),
where P (t) is a one-parameter family of operators on
H, which transforms Eq. (4) into the averaged equa-
tion (9) plus a small perturbation term. However, this
approach leads to certain difficulties with unbounded
operators and their invertibility. A novel feature of
our approach is that we look for a near-identity

The operator 3 is a periodic in t with period n and its
average 3 is

3=—H + —.—3 2 3
8 0

For e small, @ as defined by (4) appears to be a slowly
varying function of time and one might expect that an
approximation to @ could be obtained by considering
the averaged problem

iw'=eA (t) w —e'R (t)v, w(0) = itip, (12)

where R (t) is a linear operator to be determined. This
eliminates the difficulty and leads to a more straight-
forward error analysis. It is important to observe that
the perturbation term in Eq. (12), i.e., the 0(e2)
term, depends on the solution to the averaged prob-
lem, ]t. This is in contrast to usual averaging ap-
proaches and is important for the error analysis.

Thus we are looking for P (t) such that the averaged
problem (9) is transformed into (4) plus a small per-
turbation term [here it is convenient to take P (0) = 0
so that w(0) = v(0)]. Since we expect w to approxi-
mate @, Eqs. (3) and (11) suggest the approximation

Pt(t) = e "[1+eP(t)]e (i3)
to the original problem (1). p& is easily written in
terms of the eigenfunctions X„of00. A second, less
refined approximation, ili2, is obtained by ignoring the
P term in (13):

—i ( Ho+eA )t
$2(t) = e (i4)

Plugging (11) into (12) and making use of (9) gives

iP (t) =W (t) —W,

R (t) = W (t)P (t) P(t) W, —
(15a)

(15b)

where (15a) is the 0 (e) term in the resulting equation
and (15b) the remaining term. Equation (15a) is easi-
ly solved to give

transformation of the form

w(t) =v(t)+eP(t)v(t),
with P(t) as before, which transforms the averaged
equation (9) into

P(t) = —
, i [Xe "a —+4/e "aHpa+4+e "g +Hpg +ge "g )

where I denotes the time integral from 0 to t R(t) is.
then determined from Eqs. (7), (8), and (16).

In order to justify the approximations to p(t) given
in (13) and (14), we need to introduce some notation.
The inner product (f;g) for f and g in A will be the
integral over R of the complex conjugate of f times g.
The norm of fwill be denoted II f'll and will equal the
square root of (ff). A function f(t) which belongs
to 8 for ail t in the domain of interest will be said to
be t-diff if, and only if, h '[f(t+ h) —f(t)] = h 'b,f
converges in P'as h 0. Its limit will be denoted by

If T is an operator defined on the Hermite functions

D(T) = (f EA
l

(im 2 f Tx„i einxAsisl,N~ ~

Tf = g f„Tx„, f eB(T).

This defines all our operators: H Hp a, a, 2 (t), 2,
P(t), R (t) and the exponential operators associated
with H, 80, and A. The domain of self-adjointness of
H is larger than D(H), whereas the domains of self-
adjointness for H0 and A are as above. Finally, let the
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domain Dt be defined as

(18)

g(t) = e2e ' R (t) e" 'Pp. It follows that

(e (t),e (t) )' = (He + g ie ) + (ieHe + g )

= —2Im(g, e ),
where I is a nonnegative integer. In the following,
p(t) is defined by Eq. (2) and p&(t) and &2(t) are de-
fined by Eqs. (13) and (14).

Our main result is the following:
Averaging theorem —I.f Pp E D4 then there exists a

constant C independent of t and e such that

II q (t) —y, (t) II

~a~ I IIR(s)e ""Qpll ds~ Ce t (19).

Since A (t), A, and P (t) map DI into Dt 2 for i ~ 2
and e " ' maps DI into DI it is easy to see that the in-
tegrand makes sense for Pp E- D4.

Corollary. —If gp E D4 then there exist constants C
and C~ independent of t and ~ such that

II P(t) —P, (t) II ~ C e't + C,e.

The proof of the corollary follows simply from the
theorem using p —

p2 = P —
P& + p, —p2. The proof of

the theorem requires the Lemma: If pp C D4 then
Q&(t) is t-diff and

i y', (t) =Hy, (t) —e'e ' 'R (t)e ""'yp.

Proof of theorem. —Let e ( t) = P ( t) —p, ( t); then by
the lemma, e is t-diff and ie'(t) = He (t) +g(t) where

where the second equality uses the symmetry of H.
Integrating this equality and using the Schwartz ine-
quality gives II e II ~2 f llg(s) II lie(s) II ds. Denot-
ing the right-hand side of this inequality by r (t) yields
the differential inequality r'(t) ~ 2 II g (t) II r (t)'i
which can be solved to give r(t)'i ~ f llg(s) II ds.
The first inequality in (19) easily follows. The second
inequality follows after an eigenfunction expansion for
gp shows that the integrand can be bounded indepen-
dent of s and e. The argument here is similar to part
three in the proof of the lemma.

Proof of lemma —Firs. t, we show that P, (t) is in D2.
e "~' maps D4 into D4 as is easily seen by expanding
pp in terms of the Hermite functions. From Eq. (16),
P (t) is a linear combination of a, aHpa, a Hpa, and
a 4 and, for example, a acting on a function f in D4
gives a function in D2 because a4f equals g f„a X„
by definition and this sum is in D2 since a X„
=O(n2)X„4. The other terms in P(t) are similar.
Thus Qq ( t) & D2 because e ' maps D2 into D2.

Second, we assume that w (t) = [1+eP (t) ]e
is t-diff; then it is easy to show that

iy', (t) =Hpy, (t)+e ' 'iw'(t).

In fact,

h II id'& —h (Hpg&+e 'iw') ll ~ h '
ll (e ' —1+ihHp) w II

+ h ~
II b, w —hw'll + h t

II (e —1)(b, w —hw') ll + II (e —1)w'll .

The first and fourth terms go to zero as h 0 since
w' q~and w(t) E D2cD(Hp) which is contained in
the domain of self-adjointness of Ho. The second and
third terms go to zero because ~ is assumed to be t-

diff.
Third, we show that for Pp C D4 w (t) is t-diff and

i w'(t) = eA (t) w (t) —e'R (t) e

Clearly, (e ""'Pp)'= —i eAe ""'Pp for pp C D4 since
it is easy to check that D4 is contained in the domain

of self-adjointness of A. The result follows if
[iP(t)e ""'yp]'= [A (t) —A +eP(t)A ]e " 'yp.

But P (t) is a linear combination of the operators men-
tioned in the first step and it suffices to consider only
one of the terms, for example,

u (t) = e '"aH ae

onexp —I 2+& „ t o'nXn
n=0

and its formal derivative

u~(t) = —i X n„(2+ eP„)gp„exp[ —i(2+ eP„)t]X„,(x),
n=o

where o,„=(n —1)' (n ——,
' )Jn =O(n ). Since P„=O(n ) and Pp E D4, u](t) makes sense in ~ Also the

series for h I!u(t+h) —u(t) —u, (t)h II converges uniformly for h C (0, ~) and the limit as h ~ 0 can be tak-
en inside the sum giving zero. Therefore u&(t) is the t derivative of u(t). Repeating this argument for the other
terms of P (t) gives the desired result.

Finally, we now have

iPj(t) =Hpg&(t)+ e [eA (t) w(t) —e R(t)e " Qp],

A (t) w(t) =
~ q Qt (t) which completes the proof of the lemma and the averaging

I952
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theorem.
This paper shows that the method of averaging com-

plete with error bounds can be extended to partial dif-
ferential equations. Because averaging is rigorous it
can be used to establish properties of the exact solu-
tion by use of the averaged system as is done with or-
dinary differential equations. Here we have concen-
trated on first-order averaging but the details of
second-order averaging have been worked out and in
principle can be extended to the nth order. ' Also the
perturbation in Eq. (1) can be replaced by polynomials
in tI which are bounded below. '0 More generally,
averaging can be attempted on problems of the form
of Eq. (4) where the average of A (t) makes sense and
can be adequately characterized. For example, it has
been applied' to the problems of Cook, Shankland,
and Wells" and Coutsias and McIver' which contain
time-dependent perturbations and these turn out to be
simpler to treat than Eq. (1). Reference 12 uses the
multiple-time-scale perturbation method and, just as in
the ordinary differential equation case, this provides
an interesting comparison with averaging. We believe
that there are many more applications of averaging to
partial differential equations.
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