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Rigorous Derivation of Reaction-Diffusion Equations with Fluctuations
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We study interacting particle (spin) systems on a lattice under the combined influence of Glauber
(spin flip) and simple exchange (Kawasaki) dynamics. We prove that when the conserving ex-
changes occur on a microscopically fast scale the macroscopic density (magnetization) evolves ac-
cording to an autonomous nonlinear diffusion-reaction equation. Microscopic fluctuations about
the deterministic macroscopic evolution are found explicitly. They grow, with time, to become in-
finite, when the deterministic solution is unstable.

PACS numbers: 05.60.+w, OS.40.+j

In this note we show how to derive rigorous non-
linear diffusion-reaction —type equations for the mac-
roscopic evolution of microscopically simple model
systems particles on a lattice with stochastic micro-
scopic dynamics. These types of equations are often
used to describe chemically reacting systems, popula-
tion genetics, etc. ' Our analysis contains some of the
essential elements involved in the transition from mi-
croscopic to macroscopic evolution equations in gen-
eral systems: the suitable rescaling of space and time. 3

By such rescalings one takes account of the central fact
that there are a very large number of atoms in each
drop of macroscopic fluid and that there is a big spread
between microscopic and macroscopic time scales.
This brings in the "law of large numbers" which is
crucial for obtaining deterministic autonomous macro-
scopic equations for quantities which fluctuate on the
microscopic scale.

The simplicity of our model systems permits us to
obtain also these fluctuations around the deterministic
solutions directly from the microscopic dynamics.
These fluctuations form a Gaussian field with an am-
plitude of 0(e t ) around stable solutions of the mac-
roscopic equations but grow exponentially or like a
power around unstable solutions.

In the simplest case these solutions are spatially uni-
form stationary solutions of the nonlinear equation,
some of which are stable and others unstable. They
can be interpreted (in some cases) as coexisting sta-
tionary states of our microscopic lattice system, even
before we take the limit e 0. N.B.: These stationary

states are generally not equilibrium Gibbs states with
any finite-range (or rapidly decaying) potential. They
are nonequilibrium stationary states which can have
phase transition even in one dimension.

The study of such stationary nonequilibrium micro-
scopic states is in itself a problem of great interest and
was one motivation for undertaking the present work. 4

Another motivation is our hope that the analysis of the
microscopic fluctuations about the deterministic mac-
roscopic equations will add to our understanding of the
instabilities and pattern formation associated with non-
linear evolution equations. 5 This may be particularly
so in cases where stochastic lattice models are invented
to simulate physically important and mathematically
intractable nonlinear equations, e.g. , those describing
the motion of an interface between two fluids. 6

Our system is a simple cubic lattice in d dimensions,
at each site of which there is a spin o.(x) = + 1,
rr = (o (x) ~x C Z"I. (Equivalently we can think of oc-
cupied and empty sites or of two chemical species. )
We consider two mechanisms by which a configuration
of the lattice o- changes with time: a Glauber dynam-
ics in which a spin flips at a site x, o. o.", with a rate
c(x;o.), and a Kawasaki dynamics in which unequal
spins at neighboring sites exchange, o-+ a." ", with a
constant rate.

There are very few restrictions on c (x;rr). For con-
creteness it is useful to think of a Glauber dynamics
which satisfies detailed balance for the Gibbs state of a
one-dimensional Ising model with nearest-neighbor in-
teractions J at reciprocal temperature p,

c(x; ) = (1 —y (x)[ (x+1)+ (x —1)]+y' ( +1) (x —1),

where y = tanhP J.
The exchange process, on the other hand, being independent of the spin configuration on neighboring sites, acts

as if the system were at an infinite temperature, P= 0. We shall furthermore assume that this exchange rate is
very fast compared to the flip rate, i.e. , the magnetization-conserving dynamics will take place, in the language of
the introductory paragraphs, on a microscopic time scale. This change in scales will be denoted by e, with
e&& 1.

The "equation of motion" for f(o., t), the expected value at time t of a function f, when the spin configuration
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at t = 0 is cr, is a sum of a Glauber and a simple exchange Kawasaki term,

df (~, t) X c(x;o.)[f(cr",t) f(—o, t)]+a X [f(o-"",t)-f(o., t)l =L, f+& 'L-fx —2

dt Ix-yl = &

(2)

We shall now define the macroscopic magnetization
density by rescaling space by e '. (The relation
between space and time rescalings depends on the mi-
croscopic dynamics. 3) Let A~ be a cubical box with
sides of length cr, A~, centered on r 6 R . The mag-
netization density on this scale is

m'(r, t;a. ) =S,'[ed X o-(x)], (3)

where S,'=exp[LG+e Lx]t. m'(r, t; ) is a random
variable whose probability distribution depends on the
initial probability distribution of the system. We shall
assume the latter to have good cluster properties and
that as e 0, e ~ (o-(x)) p

—mp(ex) ~ 0, where
mp(r) is a smooth function of r, r 6 R, ~mp(r) ~

~ 1,
and ( ) p denotes expectations with respect to the ini-
tial distribution.

In the limit e 0 there is a true separation between
the microscopic and macroscopic scales and mp(r) be-
comes the macroscopic magnetization at t =0. We
now expect that the exchanges which become infinite-
ly fast on the macroscopic time scale when e 0 will
cause the spins in the box A~ to be distributed in-
dependently (with a product measure) at the instan-
taneous value of the magnetization m'(r, t;o.). This
magnetization will change because of fluxes through
boundaries of As and spin flips which try to make the
spins correlated. On the other hand As ~ so
m'(r, t; ) should become a deterministic variable
m (r, t) (fluctuations should go to zero), and its time
evolution be determined by use of this product mea-
sure to evaluate the changes it undergoes. This is ex-
actly what happens:

Our results form two theorms.
Theorem l.—In the limit e 0, m'(r, t; a.)

f m (r', t) d3r', a deterministic (nonfluctuating)
r

function of r and t, with the density m(r, t) satisfying
the equation

Bm(r, t)/Bt=V m+F(m(r, t)) (4)
with the initial condition m (r, 0) = mp(r).

F (m) = —(2o (0)c (0;o.) ) „ is a polynomial in

m —the average being taken with respect to the to the
Bernoulli (product) measure v, (o-(x))„=m for all"m

x. This is the same as the infinite-temperature
equilibrium state with magnetization per site m.
F(m (r, t) ) is in fact equal to the almost sure value of
lim, pLGm'(r, t;a)in .the Bernoulli measure v
which is what we expected. For example in (1), we
have

Bm(r t) B m

Br
+2(2y —1)m —2y m . (5)

To see the microscopic fluctuations in the
magnetization —corresponding to the deviations of the
probability distribution at time t from a product
measure —we must magnify them in an appropriate
way. This is given by the next theorem.

Theorem 2.—Let
@'(r,t;a) = e [m'(r, t;o) —m (r,.t ) ];

then

a random Gaussian field satisfying the following
Ornstein-Uhlenbeck —type stochastic equation:

= V'@+2F'(m (r, t) )y+ ' (6)
Bt

where W (r, t) is a Brownian motion or Wiener process
(dW/dt is "white" noise) with the covariance

( W(r, t) W(r', t')) = min(t t') [ —(1 —m2)%25(r —r') —7(1—m2)V'h(r —r') +4f (m)5(r —r') ],
where f (m) = (c (0;o.) )„[= 1 —y (2 —y) m2, for example (1)] .

The equal-time correlations of the fluctuation field @,

c(r, r', t) = (@(r,t)@(r',t)),
satisfy the following equations:

c (r, r', t) = [1—m2(r, t) ]5(r—r') + c (r, r', t ),

Bc (r, r', t)/Bt = Ac, + 2F'(m ) c, —25(r —r') [(7m ) —F'(m) (1 —m ) + mF (m) —2f (m) ],

c(r, r', 0) =0.

The roof of these theorems uses a dual branching process; cf. Liggett, 2 Sect. 3, for a clear presentation of duality.
This reduces the study of a Markov process on an uncountable state space ((—1, 1Iz in our case) to the study of its
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simpler dual process, a Markov chain on a countable
state space. We can then obtain estimates on the
correlations built up by the Glauber dynamics in a

macroscopic region, scale ~, in a macroscopic time,
scale e . The details of the proofs are rather long and
will be presented elsewhere. 7 For the case when there
are no flips our results reduce to those of De Masi
et al. 3

We shall discuss the behavior of the macroscopic
magnetization and its fluctuations in terms of the
one-dimensional example in (5). The general case
should be very similar although less is known about
the solutions of the diffusion-reaction equation in
d&1.

Equation (5) has for a given m (r, 0) = mo(r),
~mo~ ~ 1, a unique solution m(r, t) for t ~0, with
~ m (q, t) ~

~ 1.' The general time-dependent solutions
can be rather complicated. The analysis of their stabil-
ity, particularly for the "propagating" ones, is a sub-
ject of great current interest in terms of "pattern selec-
tion. " We shall only discuss here the simplest case,

when m (r, t) = m (y) is independent of r and t.
We note first that for y & 0, corresponding to anti-

ferromagnetic interactions, m (y ) = 0 is the unique
translationally invariant stationary solution —and it is
stable. For the more interesting ferromagnetic case,
y ) 0, the solution m =0 is unique for y ( y, = —,'.
For y & y, there are three solutions: m = 0, and
m = + m'= + (2y —1)'l2/y corresponding to the
magnetized state. The latter solutions are stable while
the m =0 solution is unstable. The value y, clearly
corresponds to a mean-field —type critical point —its
origin lying in the decorrelations among the spins in-
duced by the fast exchanges.

The instability of the m = 0 state, for y & y„ is re-
flected in the unbounded growth of the fluctuations
about this state obtained from the solution of (9). For
the example (1) the equation for the covariance with
initial condition mo= 0 is

"tjc,/rjt = Act —4(1 —2y) c, + 8y5(r —r'),

c (r, r', 0) = 0,
and the solution is

t

c, (r, r') = 8y& ds (47rs) 'l exp[(r —r') /4s] exp[ —4(1 —2y)s].

For y & y„c, ~ as t ~, the growth being like Jt for y, and exponential for y & y„while for y & y„
c, (r, r') exp[ —2(1 —2y) )r —r'~]1 2

3 c Y

so that the Gaussian field @ approaches a stationary
state with exponentially decaying covariances (on the
macroscopic scale).
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