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We present measurements and analysis of the basal thermal. conductivity for two dichalcogenides:
1T-TaS2 and 2H-TaSe2. The data which are obtained for the first time cover the range 80—400 K.
The lattice contribution is important for each compound and possesses specific features related to
charge-density-wave —type transitions; in particular, that of TaS2 exhibits a quite unusual upward

jump. For TaSe2 we use an order-disorder picture to explain both the lattice conductivity and the
entropy variation in unison with the electrical resistivity.

PACS numbers: 72.15.Eb, 63.20.Hp, 63.20.Kr, 71.30.+h

Layered transition-metal dichalcogenides show
strong two dimensionality. This character favors the
development of the so-called charge-density-wave
(CDW) transition' which results from a natural insta-
bility of a one-dimensional or,two-dimensional elec-
tron sea. Indeed, the electronic susceptibility has a
strong anomaly at the 2k„wave vector that perfectly
screens any perturbation with the same wave vector.
In this way the 2kF phonon can be frozen out, thus
becoming the soft mode of a displacive transition.
Above the transition temperature the metallic charac-
ter is expected, whereas electrons and phonons gen-
erally form a complicated condensed system in the dis-
torted state. The first description of the transition
between these two phases2 treated the electron-
phonon interaction in the weak-coupling limit: The
metallic state is maintained down to the transition
temperature, below which a gap develops at the Fermi
level with a temperature variation similar to that of su-
perconductors. However, analysis of experimental
data soon proved that the best-studied materials (e.g. ,
2H-TaSe2) show strong deviations from this simple
behavior. For example, the ratio 2A/kBT, (where 5 is
the measured gap, kB is the Boltzmann's constant, and
T, the measured transition temperature) appeared to
be one order of magnitude larger than 3.5, the expect-
ed value. Mc Millan3 was the first to point out that the
short coherence length go of the CDW (of the order of
the superstructure unit cell) implied that phonon en-
tropy rather than the electronic one is controlling the
transition. In this way he could explain the low value
for T„which now relates to the establishment of
long-range order (LRO) in contrast to the short-range
order (SRO) that appears at much higher tempera-
tures. More recently, Varma and Simons" developed a
strong-coupling theory for this transition and found
that electronically induced anharmonicity and mode-
mode coupling are indeed responsible for the large
depression of the transition temperature. Now, Var-
ma5 shows that this implies a violation of Migdal's
theorem, as in strongly coupled 315 superconductors. 6

One can expect the thermal conductivity of the di-
chalcogenides to be strongly modified at the CDW

transition. Firstly, as in superconductors, the relative
contributions of electrons and phonons in the energy
transport must be changed. In second place, long-
wavelength phonons which play the predominant role
in the lattice conductivity should be sensitive to the
specific transitional anharmonicities. However, little
experimental work exists7 to check the above predic-
tions in any detail. In this Letter, we present the first
measurements of the basal thermal conductivity of two
typical layered CDW compounds: 1T-TaS2 and 2H-
TaSe2. In the latter case, our results show that an ab-
normally large phonon scattering develops in the SRO
region which disappears below T, . We show that an
interpretation based on an anharmonicity caused by
two almost degenerate phasings for the CDW can ex-
plain our experimental results along with the value of
the transitional entropy and the temperature depen-
dence of the electrical resistivity.

We have carried out experiments in the range
80—400 K using a specially designed sweeping method.
For each compound, two samples were studied having
typical dimensions 5X2&&0.1 mm3. Electrically insu-
lating epoxy resin was used to attach the samples in
series with a stainless-steel reference sample between
two copper blocks at different sweeping temperatures.
The gradients on both samples are measured with use
of AuFe-chromel thermocouples; the unknown ther-
mal conductivity is then determined by the ratio of the
gradients, a geometrical factor, and the thermal con-
ductivity of the reference. Thermal shields and care-
fully controlled heat fluxes minimize radiation heat
leaks. A typical cycling speed is 0.5 K/min and the
temperature drops are of about 1 or 2 K. The pre-
cision of the measured points is about 2 K in the
presented results. More details on the particular diffi-
culties of measuring transition-metal dichalcogenides,
on sample mounting, and on the use of the method
will be given elsewhere.

The thermal conductivity of 1T-TaS2 was obtained
during cooling; it is shown in Fig. 1. The incommen-
surate CDW (ICDW) nearly commensurate CDW
(NCCDW) and the NCCDW commensurate CDW
(CCDW) transitions are clearly seen at 350 and 180 K,
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FIG. 1. Thermal conductivity of 1T-TaS2. Open circles,
experimental results. Dashed line, electronic contribution
from Wiedeman-Franz law. Crosses, estimated lattice con-
tribution.

FIG. 2. Thermal conductivity of 2H-TaSe2. Symbols
have the meaning of Fig. 1. Full line is the phenomenologi-
cal fit.

respectively: the first one as a sharp decrease and the
second as an abrupt recovery of the thermal conduc-
tivity. We have also plotted in Fig. 1 the electronic
thermal conductivity (K, ) as estimated from the elec-
trical resistivity measured on the same sample and as-
suming the validity of the Wiedeman-Franz law. At
any temperature, K, is more than 3 times smaller than
the measured conductivity. It is thus reasonable to re-
tain for the lattice thermal conductivity (K~h) the
difference between the measured value and K, . Clear-
ly the anomaly at 350 K just reflects the loss of electri-
cal carriers, while no change in K~h is perceptible. It is
clear that the second anomaly cannot be explained in
the same way: Indeed, the thermal conductivity is in-
creased by nearly a factor of 2 when K, is expected to
be further reduced by one order of magnitude. The
jump thus comes from K» and such an astonishing
behavior is quite unusual for lattice conduction. It
looks as if the causes of strong phonon scattering
disappear below the transition and that the sample is
subsequently recovering its "normal" (Umklapp,
boundaries, etc.) lattice thermal conductivity in the in-
sulating CCDW phase. More specifically, we can im-
agine that specific defects (such as discommensura-
tions) are present in the incommensurate phases
which disappear or at least are significantly reduced in
the commensurate phase. Also, the very strong
change in the electronic concentration can be responsi-
ble for the jump. Indeed, when one passes from the
NCCDW to the CCDW phase, the electrical resistivity
is strongly increased. Considering that this increase
essentially reflects the change in the density of states,
we can correlate it to the expected upward jump of the
ideal, electron-limited, lattice conductivity using
Bloch-Gruneisen —type formulas (Herman, 9 p. 133).

Our estimation gives a change by more than three or-
ders of magnitude and this is consequently compatible
with the much lower intensity of the observed jump.
This approach, however, does not explain the slight in-
crease in K~„with temperature above the transition.
This fact requires a better understanding of the
NCCDW; all the more so, since as we shall now see, a
somewhat similar effect is obtained for 2H-TaSe2.

The thermal conductivity of 2H-TaSe2 is drawn in
Fig. 2. A minimum is clearly present at the transition
temperature (T~~ —120 K) between the normal and
the ICDW phases but without any sharp features. The
qualitative temperature dependence is not unlike that
of 1T-TaS2.'a low thermal conductivity slightly de-
creasing with temperature and recovering quickly.
Note, however, that the effect is not now associated
with the lock-in transition (about 90 K). As with the
1T-TaS2, we have estimated the electronic contribu-
tion using the Wiedeman-Franz law from the electrical
resistivity measured on the same sample. This ap-
proach is justified since we expect to be in a nearly
elastic regime. K, does not exceed 25% of the total
conductivity in the whole explored temperature range,
and, consequently, K» can be nicely evaluated by
difference. In particular, we note that the calculated
K, is unable to reproduce the steepness of the dip
around T~i. The importance of this result is evident
upon considering the impossibility for such a
minimum to emerge from the lattice conductivity
should the relaxation time (i) depend only on the fre-
quency (whatever the form of that dependence) .

Clearly, a temperature variation of ~ is needed. In or-
der to obtain some insight into this variation, it is
worth going back to the electrical resistivity curve. '
Its shape, identical to that of a magnetic metal
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developing an antiferromagnetic order below TAF, may
be decomposed into two separate resistivities. '0 The
first one describes the scattering of electrons against
impurities and phonons and approximately follows the
Bloch-Gruneisen law. The second one is due to the
disordering of the spins and when T ) TzF it is con-
stant. But, when T( T~F, the scattering decreases
with increasing order, roughly following a 1 —b, 2 law
(b, is the order parameter) in the vicinity of TAF. At
lower temperatures a more complicated inelastic
behavior takes place. Following these ideas we are
thus tempted to introduce a "pseudospin" concept for
analyzing the thermal conductivity of our CDW com-
pound. Such entities can be naturally associated with a
SRO that fluctuates in regions of the size of the super-
lattice unit cell following McMillan's idea. For
T ) TM, the different conditions of the pseudospins
will be degenerate in energy, the scattering of the pho-
nons by them will be elastic, and their mean free path
will not depend on their energy. The same will rough-
ly be true just below T&z as the LRO remains weak.
On the other hand, the small size of our pseudospins
implies that all long-wavelength phonons are scattered
in the same way. As a consequence, a good guess for
the phonon relaxation time is the following: r~, is tak-
en as constant for T ) TM and increasing like 1 —A2

when T decreases below T~z. The latter phenomeno-
logical law is chosen because it appears to be valid for
several order-disorder transitions and the order param-
eter follows the temperature dependence of the CDW
gap. Now, we can describe the 2H-TaSe2 data by the
usual expression for the thermal conductivity (Ref. 9,
p. 23):

r i 3
p 8+ T X4ex

27r2v, t "o " e"—1

where x=tco/kaT, r, '=r, '+r„, ' is the total in-
verse relaxation time with r, ' a frequency-
independent, geometric, scattering rate and r~, t the
pseudospin term. The sound velocity is chosen
v=25&104 cm s ' averaged from neutron-scattering
data. " The fit obtained for the phonon thermal con-
ductivity is shown in Fig. 2. The agreement is excel-
lent for such a crude approach to the phase transition.
The value of the Debye temperature 8D needed for
such a fit is 500 K, which must be compared with 200
K obtained from specific-heat data. '2 The pseudospin
scattering rate gives a mean free path of —50 A, i.e.,
of the order of magnitude of the supposed size of the
pseudospin, namely, the superlattice unit cell. The
geometric relaxation rate is twenty times bigger than

It is difficult to attribute to it a clear physical
meaning as it certainly incorporates different scattering
rates.

To extract more information about our entities, we
must reanalyze the specific heat. The entropy (AS) of

an order-disorder transition is related to the number
(W) of degenerate states in the disordered phase by
the usual formula: AS=A In& The corresponding
value can be extracted from the data of Harper,
Geballe, and DiSalvo'2 using the baseline they give. If
we consider that we have one pseudospin per superlat-
tice unit cell, i.e. , per nine molecules, we obtain a
value of AS=5.2 J mol ' K ', reasonably close to
the 5.8 J mol ' K ' that corresponds to two degen-
erate states. So phonon and electron transport togeth-
er with the entropy of the transition give strong sup-
port to the pseudospin description of the CDW transi-
tion in 2H-TaSe2. In fact, the thermal properties of
the latter render it quite similar to the ferroelectric
KH2PO4, the classical example of pseudospin order-
disorder transitions: The behaviors of the specific
heats'3 are alike though the transition is slightly first
order in KH2PO4 which, besides, has a minimum in
the thermal conductivity at the transition tempera-
ture. '~ 2H-NbSe2 could also behave in the same way.
Indeed, the similitude holds for the level of the transi-
tional entropy and the temperature dependence of the
electrical resistivity. This is natural as the distortion in
this compound is very similar to that of 2H-TaSe2.
Thermal conductivity measurements are under way to
probe the generality of our analysis. However, we can
already notice that its extension to some other CDW
compounds proves more difficult as their transition
entropy is much smaller (see, e.g. , NbSe3' ).

To conclude, let us try to obtain an incipient
representation of the pseudospins. These not only in-
volve ionic motions between two degenerate confi-
gurations like those of the hydrogen ions and phos-
phate radical in KH2PO4, they also imply a correlated
breathing in the density of the conduction electrons.
Assuming that the commensurate state is a simple
condensation of one of the two wanted configurations,
we have first to consider the precise distortions in this
state. This problem has recently reached a firmer
understanding through the convergent-beam electron
diffraction experiment of Bird, McKernan, and
Steeds. '6 Figure 3(a) partially represents their result
while Fig. 3(b) represents a conjecture for the second
configuration. The present choice results from a re-

FIG. 3. One possibility for the two pseudospin configura-
tions. (a) The commensurate unit cell: points represent
tantalum ions and arrows their displacements. Selenium
ions are omitted for clarity. Shaded area indicates a deficit
of conduction electrons. (b) The alternative configuration.
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cent analysis by Wilson, ' who shows that the two con-
figurations are related to the strong influence the d,
band saddle points have on the nesting characteristic
of the Fermi surface. Finally, we must notice that the
real motion in the "normal" phase may involve the
proposed configurations only in part.

The authors wish to thank Dr. P. Molinie for kindly
providing the samples.
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