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Midgap State in Nearly Commensurate Charge-Density Waves
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The mean-field Frohlich Hamiltonian in one dimension is diagonalized numerically in a self-
consistent manner for systems with a nearly ~-, T-, or 4-filled band. Near the Fermi energy,
midgap states are present inside the main gap, and the location of the midgap states is not right in
the center of the main gap. Recent absorption experiments on orthorhombic TaS3 are analyzed in
terms of the above results.

PACS numbers: 71.20.+c, 71.25.Pi

The energy-gap structure of the one-particle excita-
tion spectrum near the Fermi level is one of the most
fundamental quantities in condensed-matter physics.
This is particularly true for ordered states such as
charge- or spin-density waves. It is generally believed
that even incommensurate ordered states possess
essentially the same single-energy-gap structure near
the Fermi level as do commensurate states. We
demonstrate here that such "common sense" is not
true.

Much attention has been focused on incommensu-
rate states in various research fields. In particular,
the charge-density-wave (CDW) states in quasi-one-
dimensional materials such as TaS3, NbSe3, and
Ko 3Mo03 have attracted much interest in connection
with their non-Ohmic conduction mechanisms. In
spite of intensive theoretical and experimental efforts
the energy-gap structure of the incommensurate
charge-density wave (ICDW) state has not been fully
elucidated yet, partly because of the difficulty of mak-
ing a good sample. Recently a remarkable experiment
on orthorhombic TaS3 has been reported2: Itkis and
Nad' observe sharp absorption lines (at energies of—62 and 125 meV) inside a fundamental absorption
edge ( —184 meV) corresponding to the Peierls gap at
T=98 K, a temperature which is below the Peierls
transition temperature To —215 K and just above the
commensurate-incommensurate lock-in transition. 3 4

They suggest the presence of a midgap state in the
ICDW state.

The aims of the present paper are twofold: One is to
show that the electronic density of states in the nearly
commensurate CDW of one-dimensional systems
indeed possesses the midgap state inside the Peierls
gap quite generally, which is in marked contrast to the
commensurate CDW state in which the simple BCS-
like gap exists near the Fermi level. The other aim is
to find the detailed nature of the midgap state, such as
the position of the midgap band relative to the Peierls
gap and its wave function. We also compute the spa-
tial modulation of the electron density and the lattice
distortion, and confirm that the midgap band is due to
the soliton (discommensuration) lattice structure of

such spatial modulations. By exact diagonalization of
the mean-field Frohlich Hamiltonian in one dimen-
sion, including all higher harmonics inevitably arising
from a self-consistent condition, 5 we numerically study
the ICDW systems with a nearly —,'-, —,-, or —,'-filled
band. In the nearly —,'-filled-band case an analytic
solution is known6 to yield a narrow band of midgap
states located at the center of the Peierls gap, thus
serving as a check for our calculation. In other cases7 8

of electron filling the detailed gap structure remains to
be studied, although their single-soliton structures as
fractionally charged objects have been investigated ex-
tensively. 9 Previously Le Dacron and Aubry'0 have
studied the ICDW problem by diagonalizing a model
numerically in real space in a self-consistent manner.
This is complementary to our momentum-space ap-
proach. Brazovskii, Dzyaloshinskii, and Kirchever"
have studied the ICD% problem analytically, but their
model is a specialized one.

We start with the standard Frohlich Hamiltonian in
one dimension and treat it in k space (we neglect elec-
tron spin):

H= gk ekck ck+ xk ~kbk bk

+ gk gk(bk+ b —k)Pk
1

N

with pk= g c~ cq+k, where ck (bk) is the creation
operator of an electron (phonon). Applying the
mean-field approximation, we obtain H = H, t+ H„h.

Hel gk ekck ck+ gk (~k) P k ~—
Hph= gk tokbk bk+ xk (P i ) ~k ~—

where (bk) =gk((bk) + (b „))//JN and (pk) is the
expectation value of pk. The diagonalization of the
phonon Hamiltonian Hvh yields a self-consistent equa-
tion: (bk) = —(2~gk~2/Nook) (p k). The lattice dis-
placement u„at the nth site is given by u„
= gk [(bk)/gk(2Mtok) ]exp(ikR„), with M being
the ion mass.

Let us consider the system with the electron number
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v per site (0 & v & 1). Lattice distortion due to the
Peierls instability and described by the fundamental
wave number Q=2kF (the Fermi wave number is

kF = mv/a and a is the lattice constant) occurs spon-
taneously in the ground state. This distortion neces-
sarily induces higher-harmonic distortions ( (b, 2g ),

) etc.) through the self-consistent condition.30
Thus the effective mean-field electron Hamiltonian is
reduced to FI&)= Xk Ekckck +

/ I b, tp Ig with th
self-consistent equation b. , = (b, lg) = (2)gig ) /

&~tg ) (Plg) .
When v is rational, i.e., v = m/n (m and n are prime

to each other), the problem is reduced to diagonaliza-
tion of a n x n matrix ( n is called the commensurability
index). Our calculations were performed by a simple
iteration method: We first assume a set of the values

(I=1,2, . . . , n). Then diagonalizing the Hamil-
tonian matrix to obtain the eigenvalues and eigenfunc-
tions for certain points in the Brillouin zone, we obtain
a new set of b, I and substitute these into the self-
consistent equation to check the self-consistency. This
step is repeated until the self-consistency is attained.
We choose ok= —cosk (the energy unit is twice the
transfer integral of the tight-binding model and length

l2is scaled by a) and introduce n (n =2)glg) /cong). We
assume that ~gk~2/&uk is independent of k for the con-

venience of computation although it is easy to relax
this in our calculation. We mainly focus on the sys-
tems with a nearly quarter-filled band, v = (1/n
&& (I+5), where n =4 and 5 is small, although we
have done calculations for the nearly half-filled
(n =2) and one-third-filled (n =3) cases. The max-
imum n that we have treated is about 100. In this case
our calculation is effectively of an infinite system with
an effective unit cell of size about 100 sites. We have
checked our calculations by comparing them with the
previous cases7 with lower commensurability indices.

Figure 1(a) shows the overall band structure in the
reduced-zone scheme for the nearly 4 -filled case
( n = 4, 5 = —,', ) where the band is split into four bands
on the whole, opening up the Peierls gaps. Note that
the self-consistent requirement of our problem keeps
the number of visible gaps small' (compare with the
case by Prange, Grempel, and Fishman ). In Fig.5

we can clearly see the extra band situated inside the
main gap. Such a midgap state always appears.

In Fig. 2 we depict traces of the gap edges near the
Fermi level as a function of the deviation 5 from
quarter-filled. As the system approaches the com-
mensurate state, or ~5 ~ decreases, the midgap band be-
comes narrower and clearly split off from the main
bands while the magnitude of the main gap remains
constant, tending smoothly to the commensurate gap.
The location of the midgap state depends on the sign
of 5; when 5 is positive (negative), it is situated near
the occupied (unoccupied) band or valence (conduc-
tion) band and is occupied (unoccupied) by electrons.

This feature of the existence of the midgap state ap-
pearsears for other values of the electron-phonon coupling
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FIG. 1. (a) Dispersion relation (energy E vs wave
number k) in the reduced-zone scheme for the nearly
quarter-filled case v 95 5 + 95 and 0, = 1.15. The en-

ergy band below F. = —I/J2 is occupied by electrons. (b)
Enlarged figure of the dispersion relation near the Fermi
level for v = ~5, 5 = + ~5, and o. = 1.0. Note that the
midgap state at E = —0.74 denoted by the thick line is split
off from the valence band and is occupied by electrons.
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FIG. 2. Traces of the band edge near the Fermi level as a

function of the deviation h from quarter-filled (n = 1.08).
The lowest (highest) curve indicates the top (bottom) of the
valence (conduction) band. The midgap band is clearly seen
between the valence and conduction bands. The arrows in-
dicate the gap in the commensurate state.
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FIG. 3. Electron density variation as a function of the lat-
tice site for the nearly quarter-filled case (v = (r9-, 8 = + ~9,
and o. = 1.08). The period of the variation is 99 sites. Rapid
changes of the variation at around the 50th and 150th sites
indicate solitons. In between, electron density modulation
with periodicity of four sites is seen, corresponding to the
commensurate CDW state,

constant o. and is also seen in the nearly —,'- and 3-
filled cases. We note, however, that upon decreasing
n and also increasing n (n =2, 3, and 4), we have to
decrease 5 to approach a "nearly commensurate" situ-
ation.

The electronic charge-density modulation is shown
in Fig. 3. It is seen that the fourfold-degenerate
ground states are connected through a soliton or
domain wall which spreads over —20 lattice sites.
Between the solitons, which are placed regularly to
form a soliton lattice, an almost commensurate state is
realized. The excess (deficit) charge density for the
5 & 0 (8 ( 0) case is accumulated at the soliton sites
as shown in Fig. 4, accommodating a fractional charge
of e/4. The width of the excess (or deficit) charge
density coincides approximately with that of the soli-
ton as shown in Fig. 3.

The resulting eigenfunctions obtained after diago-
nalization of the Hamiltonian self-consistently reveal
that while the eigenfunctions in the conduction or
valence bands are extended over a whole system, the
eigenfunction corresponding to the midgap state is lo-
calized exponentially at the soliton site as long as 6 is
small as is seen from Fig. 5. Therefore, the soliton is
responsible for the appearance of the midgap state.

Let us briefly examine the experiments on a quasi-
one-dimensional CDW system, orthorhombic TaS3.
The wave number of the ICDW along the chain axis
or c axis continuously decreases from —0.255c' at the
onset, To= 215 K, to 0.250c' at the lock-in transition,—90 K. Therefore TaS3 is an ideal system with a
nearly 4-filled band (5 )0). The fundamental ab-
sorption spectrum2 at T= 98 K consists of three peaks
at hvt = 184 meV, hv2 ——125 meV, and hv3 = 62 meV.
Since the energy of the Ave peak roughly coincides

with the activation energy estimated2 from the conduc-
tivity, we can identify it as the absorption across the
main Peierls gap. As is seen in Fig. 2 [the deviation 5
from quarter-filled in TaS3 at T= 98 K is estimated3 as
8 = 0 (0.01)], we expect two more absorptions in the
ICDW, namely, the electronic transition from the oc-
cupied midgap state to the conduction band and the
other process from the valence band to the midgap
state. An applied electric field or thermal effect
makes the latter process possible. We notice that
hvt —hv2=—59 meV is roughly equal to hv3=62 meV,
coinciding with our assignment of the peaks. In exper-
imental data2 taken under other experimental condi-
tions the essential feature mentioned above is
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FIG. 5. Amplitude of the wave function corresponding to

the midgap state as a function of the lattice site (v = ~5,
5= ~5, and 0. =1.15). The wave function of the midgap
state is localized exponentially at the soliton sites.
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FIG. 4. Local electron density averaged over the nearest
six lattice sites (v = ~9, 8 = + ~9, and n = 1.08). The ordi-

nate indicates the deviation from the mean electron density.
The excess electrons are accumulated at the soliton sites,
carrying a fractional charge. The total area under the curve
is —„',which corresponds to the excess charge. (Note that the
electron spin is neglected. )
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preserved. Therefore, we conclude that the ICDW in

TaS3 possesses a midgap state.
We mention additional evidence of the midgap state

in other systems. The half-filled case is rather excep-
tional and different from the other fillings; the posi-
tion of the midgap state is approximately at the center
of the main gap, which implies that the absorption
consists of two peaks (hvt and hv2= hv3) instead of
three. This fact has been observed'3 in the incom-
mensurate spin-density-wave state of Cr which has
been proved to be mathematically equivalent to the
ICDW with a —,

' -filled band.
The midgap state which we have demonstrated to

exist in nearly commensurate CDW states is observ-
able in other low-dimensional CDW materials such as
Ko3Mo03 or (TaSe4)zl. If we focus on the tempera-
ture near a lock-in transition, we always get a "nearly
commensurate" situation in which the bandwidth of
the midgap band becomes narrow enough to be easily
accessible experimentally.

In summary, we have confirmed the general ex-
istence of the midgap band due to the soliton lattice in
nearly commensurate Peierls systems by fully self-
consistent calculations.
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