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Do Interactions Raise or Lower a Percolation ThreshoM'?
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A Monte Carlo study of spherical particles shows that increased interaction strength may either
raise or lower the volume fraction required for percolation. The sense of the change depends on
the distance at which two particles are considered connected, the dimensionality, and the proximity
to the critical temperature. An on-lattice simulation supports the continuum result.
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Though early studies of percolation theory described
simple random systems on a lattice, recent studies
have treated diverse models which may be off lat-
tice, ' have correlated occupancy, and/or involve
particles which interact at thermal equilibrium. ~ Mi-
croemulsions, for example, are tricomponent systems
of oil, ~ater, and surfactant with these properties;
globules exhibit a percolation threshold for ionic con-
ductivity which depends strongly on interaction
strength. 7 Previous investigations have concluded that
attractive interactions (or positive correlations)
between particles lower the percolation threshold,

We find, however, that in general, clustering
due to interparticle attraction may raise or lower @~.

Our computer model is an off-lattice system of par-
ticles undergoing Brownian motion via a Monte Carlo
algorithm. These colloidal particles have both an
excluded-volume repulsion and a short-ranged attrac-
tion: U(r) =oo for r ( a, —e for a ~r& a(1+X)
and 0 for a(1+A.) ~ r. The hard-core diameter is a;
the interaction range ~ is fixed at 0.1 for this study.
400 particles [two dimensions (2D)] or 500 particles
(3D) are allowed to reach thermal equilibrium
( —40000 steps per particle), and then the instantane-
ous configuration of the particles is tested every few
hundred steps for the existence of a spanning cluster.
One constructs a shell of diameter a (1+5) about each
particle's center and asserts that two particles are con-
nected if their shells overlap. Some generalized cri-
terion, such as this one, for the connectedness of two
particles is necessary in the continuum. ' The distance
a 5 may be thought of as the range across which an ex-
citation may "hop" from one particle to another.

The results of these simulations are obtained at
fixed a for various particle densities, p. All runs are
performed in the one-phase region. At each value of
@=7rpa /4 (2D), or @=+pa /6 (3D), the periodic
searches generate the probability that a spanning clus-
ter exists as a function of 5. Such curves are found in
Ref. 8; we take the value of 5 at which this probability

is 0.5 as 5~, the value at threshold.
Our continuum results are summarized for d = 2 in

Fig. 1(a), which is a phase diagram for fixed h~. The
curves dividing percolating from nonpercolating re-
gimes are parametrized by e. The coexistence curve is
approximate. By definition, different curves param-
etrized by 5~ cannot cross one another, and all curves
with 5~ ) X must meet the coexistence curve at or to
the left-hand side of the critical point. ' For an inter-
mediate value of h~, the percolation line bends toward
higher @ for e small but, constrained to meet the coex-
istence curve to the left of @„bends in the opposite
direction for larger e near e, .

Our novel result, that an increase in e may increase
$~, is not an artifact of the continuum nature of the
simulation. If one retains the freedom of assigning the
range at which particles are connected, the new
behavior is also seen on a lattice. Figure 1(b) is the
result of a conventional 20 lattice-gas simulation on a
square lattice with nearest-neighbor interactions. In
this simulation, two occupied sites were considered
connected if they were separated by a geometrical dis-
tance less than or equal to some value R, the lattice
analog of h. ' For nearest-neighbor connectedness
(R = 1), we find only the conventional results, which
agree with the data of Vicsek. " As a consequence of
the fact that two phases may not percolate simultane-
ously in two dimensions, this percolation line must
meet the coexistence curve at the critical point, '
which is @,= —,

' for a lattice gas. However, for R ) 1,
no such topological restriction exists; the "shell"
about each occupied site is permeable. Thus, curves
for R ) 1 are free to meet the coexistence curve at

In Fig. 1(b) one sees bending of the percola-
tion line toward higher volume fractions with R only
as large as 2 (with next-nearest-neighbor connected-
ness) .

We will now argue that our novel result arises from
the generality of 5, i.e. , from the independence of 5
and P which allows the hopping range to exceed the in-
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FIG. 1. Dashed lines divide percolating (right-hand side of line) from nonpercolating regions for the given 5~ in 2D. (a)
Continuum simulation. (b) Lattice-gas simulation. R is the range (Ref. 9) over which occupied sites are considered connect-
ed. The fine dotted lines are a guide to the eye.

teraction range. As a first step in the argument, con-
sider the simplest case, that of X=0. Particles do not
attract one another and each consists of an imperme-
able core surrounded by a completely permeable outer
shell. When the shells of adjacent particles overlap,
they are said to be connected. If we imagine varying
the ratio of the shell radius to the core radius, two
geometrical effects make competing predictions: (i)
For a system to percolate, pairs of particles must have
shells which overlap. Thus, particles with a greater ra-
tio of shell to core have a greater probability for pair-
wise overlap; their threshold is lowered. (ii) At
threshold, the correlation length for connectedness,
g~, diverges and a spanning cluster appears. Particles
with a greater ratio of shell to core have a smaller
mean radius for clusters of a given mass, and hence
their percolation threshold is raised.

Now we extend the argument to the full case, where
A. , ea0. The competing trends predicted by (i) and
(ii) still exist because of the following analogy between
the ~=0 and a&0 eases: Far from the critical point,
an increase in attraction strength (e) is analogous to a
decrease in the ratio of shell to core (if the range of at-
traction is less than the permeable-shell radius). That
is, an increase in e will (i) promote pairwise overlap,
but (ii) render clusters more compact. Thus, @~ may
rise or fall with interaction strength. Figure 2 illus-
trates the compaction of clusters which leads to an in-
crease in threshold. Previous work on lattice did not
reveal both trends because only nearest neighbors
were connected; the shell radius was fixed at the in-
teraction range. Previous work off lattice investigated

the case of a vanishingly small shell, or looked in de-
tail only at the lowest-order term in a series expansion
for the threshold. These found only the trend given
by argument (i) above.

To view the effects of interaction on clustering and
clustering on threshold, an alternative way of viewing
the data from that of Fig. 1 is needed. For example,
one wishes to know the hopping range, 5~, which just
allows a sample of a given @, e to percolate. So consid-
er Fig. 3, which plots, as a function of @, @~, the re-
duced volume fraction of Ref. 8. $~ has the appeal of
an "effective" volume fraction; it is defined as
P~ = @(1+5~)dand it is simply the volume fraction of
the hard core plus shell at percolation threshold. From
Fig. 3, in the absence of attractive interactions, @~ vs
@ displays a minimum in both 2D and 3D. Further,
the effect of attraction is to increase @~ for low P, and

(b)

FIG. 2. Hard particles with permeable shells in 2D;
P = 0.24. The radius of the shell is chosen so that system is
at its percolation threshold. (a) No attraction. (b) Attrac-
tion leading to clustering.
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FIG. 3. Reduced volume fraction (Ref. 8) at percolation
threshold as a function of volume fraction. Filled circles at
@:—0.91 (2D) and @:—0.64 (3D) are exact values for ran-
dom close packing. For e large, local minima are centered at
g, in 2D and 3D. (a) In 2D for small @, @~ rises and then
falls with e. Dotted lines are a guide to the eye. (b) In 3D,
attractions raise @~ for small P, and lower it for larger @.
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decrease it for high @. Finally, local minima appear at
the estimated critical density for phase separation in
2D and 3D near the critical temperature. The approxi-
mate critical volume fractions are ' P, =0.22 (2D)
and =0.13 (3D), consistent with the extrema in Fig.

To apply arguments (i) and (ii), it is useful to
transform the horizontal axis of Fig. 3 as in Fig. 4.
There, the independent variable is the hard-core radius
fraction, 1/(1+ 5).' Zero hard-core fraction repre-
sents completely permeable particles; a hard-core frac-
tion of unity represents impenetrable objects. Again,
consider first the simplest case, e, ) =0. It is now
straightforward to evaluate the outcome of the com-
petition between effects (i) and (ii) from the filled cir-
cles of Fig. 4. In 2D and 3D, for a=0, effect (ii)
dominates for small hard-core fractions, and effect (i)
for large ones. The decrease in @~ with I/(I+5) (to
the left-hand side of the minimum) in Fig. 4(a) agrees
quantitatively with Ref. 1, and agrees with the trend
seen by Gawlinski and Redner' for oriented square
elements.

A rigorous way to evaluate the outcome of the com-
petition between (i) and (ii) is to employ an exact
series developed by Coniglio and co-workers5: To
lowest order in @~ for the case e = 0,

= {2 [1—1/(1+ /)d] )

This term predicts the behavior (i); P~ is inversely
proportional to the phase space for pairwise overlap.
At next order in @~, the series for S(@), the mean
cluster size, produces an estimate of @~ from the ratio
test. For a nonvanishing but small, the new term
predicts d@~/da!, lt+sl=t = —b„a" ' in n dimen-
sions with b2 ——1.209, b3 yp ~ Thus for a small
[equivalently, 1/(1+ 5) small] an increase in the
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FIG. 4. Reduced volume fraction at threshold as a func-
tion of hard-core fraction. Crosses are derived from Table II
of Ref. 1.

hard-core fraction decreases the percolation threshold
$~; the decrease is linear in 1/(1+5) only in 2D and
is progressively weaker in higher dimension. This
predicted dominance of effect (ii) for small 1+5 is
seen in Fig. 4. It has been shown that in infinite
dimension, all virial coefficients vanish in units of the
second'; a consequence is that for d = ~, there is no
second-term correction to the expression for P~ above.
Thus for a/5 small, effect (ii) is absent in infinite
dimension.

Now consider the case e, )e0; how should we ex-
pect the attractive interactions to affect the percolation
threshold? To first order in @~,

d (, ) (I+a) e'
(1+8)"

where X ~ 5. One can pursue the series to higher or-
der, based on known virial integrals, ' but even the
next term is quite complicated. However, alteration of
e should effect the threshold as would alternation of
1/(1+5) in the opposite direction. This is apparent in
the lowest-order approximation to @~ above. Indeed,
in Figs. 4(a) and 4(b), in the region where an increase
of 1/(1+ 8) with e = 0 lowers @~, an increase of e for
fixed 1/(1+5) raises @~. For larger 1/(1+5), where
an increase of 1/(1+5) raises P~, an increase of e
lowers @~.

This simple line of reasoning must be suspended
near the coexistence curve. For d = 2, the critical den-
sity lies in a region where decreased clustering aids
percolation; for & not too large, a maximum appears in

However, as e, is approached, @~ reverses its
trend of increase and a minimum forms about the crit-
ical density. This must occur as a consequence of the
Fisher droplet picture of the critical point. ' It has
been rigorously shown that for a lattice gas, 4'

g~
~ $T,

i.e., the correlation length for nearest-neighbor con-
nectivity exceeds the thermal correlation length. For
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our off-lattice system, the correct generalization is that
for 5 —

A. , g~
~ gr. That is, there must be a nonvan-

ishing probability that particles are connected with 5
not greater than the interaction range in order for
them to display nonvanishing density fluctuations
about the mean density. Thus, near e„Figs. 3(a) and
3(b) show minima centered at @,. And in Fig. 1(a)
for 8 near A. , $~ decreases sharply with increasing e in
the neighborhood of the critical point.

In conclusion, 'interactions may raise or lower a per-
colation threshold on or off a lattice, given a general
definition of connectedness. We gratefully ac-
knowledge conversations with S. Alexander, H. L.
Frisch, Y. Kantor, K. Kremer, J. Percus, D. Stauffer,
and T. Vicsek.
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