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Langevin Simulation Including Dynamical Quark Loops
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A Langevin method is proposed for simulation of full QCD including dynamical quark loops. It
is shown that the method works well once a proper discretization of the fictitious time is made. A
realistic simulation with this method is perfectly feasible on vector computers presently available.
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Recent applications of Monte Carlo techniques to
lattice gauge theories' have greatly facilitated our
understanding of hadron dynamics. It has enabled us
to calculate a variety of important physical quantities
including, albeit within the quenched approximation,
the hadron spectrum. 2 For a full treatment of lattice
QCD, however, one needs efficient techniques for in-
corporating the effect of vacuum quark loops. The
majority of the attempts so far utilized the pseudofer-
mion technique. More recently the microcanonical
method4 has been extended to include dynamical
quarks. Both methods involve approximations and
assumptions which require a careful scrutiny for their
justification: In the pseudofermion case, the ratio of
the quark determinant is approximated by the leading
term in the variation of the gauge variables. The vali-
dity of the microcanonical procedure hinges on the as-
sumption of ergodicity besides the apparent drawback
that the coupling constant has to be calculated through
the simulation itself.

We point out that the Langevin formulation of field
theories provides an interesting alternative for solving
full QCD including dynamical quark loops, which
seems free from these potential sources of trouble. In-
clusion of dynamical quark loops is achieved by ex-
pressing the quark determinant in terms of effective
bosonic variables. 7 The solution of the corresponding
Langevin equation generates an ensemble having the
measure of full QCD. There is no approximation in-
volved in the framework itself.

We have undertaken a study of the practical prob-
lems that arise in solving numerically the Langevin
equation. Our study has revealed the following: (i) A
conventional discretization of the fictitious time
derivative leads to large systematic errors, especially
for correlations at large distances, which practically in-
validates the procedure. (ii) With a second-order im-
proved discretization, however, the Langevin method
works beautifully, both without and with dynamical
quarks. Our extensive calculation with the SU(2)
gauge group shows that the effect of quark loops sub-
stantially modifies the result obtained in the quenched

approximation. A preliminary study for SU(3) indi-
cates that a simulation on a 10 lattice or larger with
several thousand sweeps is feasible with vector com-
puters available today. We have also examined the
microcanonical method. A comparison will be made
with the Langevin method toward the end of this note.

We begin the consideration of systematic errors in
the Langevin simulation for pure gauge system. Let
S(U) be the action with Ui the SU(N) gauge variable
on the link I, and let Vi = t'V t' be the right derivative
with 'Via= g;J ( Ut ta) J "r)/8 Utii and tr ( t'tb) = 8'b. The
Langevin equation is given by8

—iUi(r )
—

U, (.)
d~

Let us discretize the time r in steps of b, r and write
Ui(") =—Ut(nitty). The simplest discretization of (1)
preserving the unitarity constraint on Ui is given by

U(n+1) U(n) exp(i&, (U n) (n) ))

~ (U(n) (n) )
= —ib r'r7(S (U " ) + (I).r)

and gt(" = t'qt' " satisfies

( a(n)+ b(n')) 28 g xnanII'

(2a)

(2b)

In Fig. 1, we show by open circles the SU(3)
Wilson-loop averages for the standard single-plaquette
action from the iterative solution of (2) with Ar = 0.01
on 44 lattice and compare them with the result of the
Monte Carlo simulation (crosses). The Langevin
result is systematically smaller and the difference
between the two is substantial, especially for the 2x 2
Wilson loop.

We found that this is a systematic error arising from

= —i V'tS(U(r)) +7)t(r),
with r the fictitious time and qi(~) = t'qt'(r) the
Gaussian noise satisfying
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the discretization of time (2). To show this, we define the distribution function p
" (U) by

p "1(U)= ( a(U Ul" ))
where (. . . ) denotes average over the noise q101, . . . , qf" '1. Substituting (2) and expanding in hr, one finds
that the Fokker-Planck equation for (2) takes the form

(1(g&) ( (n+ 1l (nl) ~ inl (nl g&~ lnl (n) + g (g&2)

where the operators D I "l and D I
"l are defined by

(n) (nl —X 1~a(~aS(n) {n))+ ~a~ a (n)I

~ (nl (n) g(1 ~ a~ b(~ aS(n) p bS(n) inl ) + & (~ 2~ b +~ b~ 2+ ~ a~ b~ a) (~ bS(n) (n) )

1 (~2~2+~~2~ +a~~b~ ~ab) ln)) (6)

&„=exp[ —S—eras, + O(ar2) ], (7a)

SS, = ——,
' Q,V,2S+ —,', c,S+-,' X,V;SV;S, (7b)

where c2 represents the quadratic Casimir invariant in
the adjoint representation. For the standard single-

fx1 X ~0
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2x2

FIG. 1. Wilson loop for SU (3) pure gauge theory.
Langevin results are represented by open and filled circles
for naive and the second-order discretization, respectively.
Crosses are Monte Carlo results. The error bars denote
mean square deviation.

with Si "I —= S(UI "&) and ~12=~'~'
Equation (4) shows that the limiting distribution for

the first-order discretization (2) deviates from the
desired form exp( —S). The stationary solution p of
(4) takes the form

plaquette action the first two terms of (7b) shift p to

P,fr = I1 —[2(N2 —1)iN —
6 N]57)P,

while the third term generates an additional action
containing two plaquettes. Both these terms favor dis-
ordering of the gauge configuration. Hence we under-
stand the trend in Fig. 1 that the Langevin result is
smaller than the Monte Carlo value. The magnitude
of the difference, estimated by ignoring the (V'S)
term for simplicity, is in rough accord with the data
shown in Fig. 1.

The systematic error could, in principle, be reduced
by choosing b, r sufficiently small. Unfortunately, 1'/o

accuracy in p,ff(Ar ( 0.002) does not guarantee the
same accuracy in the correlation functions because
their P derivative is large at large distances, especially
in the crossover region. Furthermore, the number of
iterations needed to generate an independent config-
uration is proportional to b, r ', and hence so is the
computer time. This makes the simulation including
quarks practically impossible, for the computer time
per iteration for full QCD is at least an order of magni-
tude more than that of the pure gauge case.

Clearly, reducing A~ is not the way to diminish the
systematic error. One rather needs an accurate discret-
ization algorithm which ensures that the limiting distri-
bution agrees with exp( —S) up to order 67. Our al-

gorithm is given by

g (nl iver~ S(U(n)) + (g&)1/2 (n&

U (n+ I/2) U (n)expI~(n)l

X,&11= —i~.V,S(U«+'i'1) + (

U(+1) nU'(n)eXp[i (pX nl+ g fn ))

The requirement on the corresponding Fokker-Planck
equation spelled out above is met if the parameters P
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and y satisfy

p= 2~ +A7p( y = 2~ +~&yt.
(10)

and if the Gaussian noise q((") = t'q('(") is renormal-
ized by

")„',("') =2(1—a —,
' c,)n,a"a" '

In Fig. 1 we plot by filled circles the Wilson-loop
averages from the second-order algorithm [(9)—(11)]
with 5r =0.01 and Pt=yt= cg24. The very nice
agreement with the Monte Carlo results demonstrates
the effectiveness of this algorithm. With b, r=0.01,
the systematic error is reduced by two orders of magni-
tude by repeating essentially twice the first-order algo-
rithm and hence by using only twice the computer
time. (We also carried out runs with A7 up to 0.1.
The systematic error exhibited a quadratic dependence
for large hr as expected for the second-order algo-
rithm. No noticeable deviation from the Monte Carlo
values is found up to Ar —0.05.)

We now describe the extension of the method to full
QCD. The effect of vacuum quark loops arises from
the determinant detD(U). If D(U) is positive defi-
nite, detD (U) equals the Gaussian integral of a
complex scalar field Y, on site s with the action
S~(U, Y) = Y, D '(U), Y, . Thus, one may take

I I I I
[

I I I

(a)

1xt

1x2

~ y ~

with two flavors (D =DpDp). In Fig. 2(a) we show
the K dependence of the Wilson loop and in 2(b)
(Ic(I[I) at p=4/gp ——2.0 on a 4 lattice, the latter being
calculated by the identity (Ic(ICI) = —(tr(D 'YY D
x Dp )). At each K, we carried out 2500 second-order
iterations using the last 1500 iterations for the average
(6v = 0.01).

The dynamical quark loops make the gauge config-
uration more ordered than in the pure gauge case.
This is clearly visible in Fig. 2(a) beyond K —0.12.
(The points at K =0 are the Monte Carlo results for
the pure gauge system. ) The 44 lattice is probably too
small to observe the effects of quark-pair creation in
the static potential. It is nonetheless suggestive that
the Wilson loop at K & 0.15 plotted against area exhi-
bits a concave shape in contrast to an exponential de-
crease for K & 0.12. The loop effect is also apparent
in the chiral order parameter [Fig. 2(b)] which devi-
ates from the quenched value (cross) from K —0.12.

S,ff(U, Y) = Sf(U, Y) + S(U) (12) 2x2

as the effective action for the full QCD. 7 The
Langevin equation

—(U((r) U((~)
d7

( 7(S ff(U(7 ), Y(r ) ) + 'I)((r ), (13)

0.01
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Y, (r) = —D-'(U(r)), , Y,(.)+g,(.), (14)

with q( and (, the Gaussian noise generates the distri-
bution exp( —S,ff) as r

In discretizing (13) and (14), a second-order algo-
rithm is certainly needed to avoid systematic error.
Using the Fokker-Planck equation, we found that the

(n) (n') ~

standard Runge-Kutta algorithm with ((,(")((," ) )
=25, ,5"" for (14), together with the discretization
procedure [(9)-(11)]for (13) (with S S,«), gives
the limiting distribution that deviates only by terms of
O(47 ) from exp( —S,ff). Compared with the pure
gauge case, the additional complication is the calcula-
tion of D ' Y from Ywhich could be handled by stand-
ard methods such as conjugate gradient.

We have tested the above framework for SU(2) us-
ing Wilson's fermion action

Dp= 1 —K [X(1—y„)U(+ (1+y ) U, ,

)4
4I

X
4I
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FIG. 2 (a) Wilson loop for full SU(2) theory with Wilson
fermion (two flavors) at p=2.0 on 44 lattice. (b) (I((I(() at
P = 2.0 on 44 lattice. Crosses represent the quenched value.
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These trial results show that the. effect of quark loops
could be quite large so that the quenched results for
properties of hadrons might be substantially modified.

A check on the systematic error is provided by the
equality (Sf) =4X3X V with V the number of sites.
The deviation of the measured value from this was
less than 1'to. We also repeated the calculation with a
smaller time step, 4~=0.002, and aside from the sta-
tistical fluctuation did not find any deviation from
those of Fig. 2.

We examined the convergence by repeating the cal-
culation with a different sequence of random numbers
and a different type of initial configurations. The con-
vergence was particularly slow around K —0.15 com-
pared with smaller or larger values of K. A plausible
explanation is that at K —0.15 the effective value of P
reaches 2.2 at which a sharp crossover occurs in the
pure gauge case.

The Langevin simulation is very much suited to vec-
tor computers. Our preliminary study shows that
SU(3) simulation (Wilson fermion) on a 10" lattice
can be done with about fifty megabytes of storage and
about 30 h of computer time for 2500 iterations.

The microcanonical method5 also tries to generate
an ensemble governed by the effective action (12). In
order to compare with the Langevin method, we have
examined it for SU(2), paying particular attention to
the questions associated with ergodicity. " We note
that the ergodicity assumption fails in the limit of weak
coupling and/or large quark mass since the system (or
part of it) becomes integrable in these limits and hence
by the Kolmogorov-Arnold-Moser theorem' invariant
tori exist on the energy surface.

Our microcanonical formalism is slightly different
from that of Ref. 5 in that —Ut 'dUtjd~ is identified
with the gauge momentum and the gauge degree of
freedom is fixed by the complete axial gauge. Our
study on a 4 lattice shows that the method works for
the pure gauge system; the Wilson loop averages agree
with Monte Carlo values and the kinetic energy distri-
bution coincides with that calculated from the micro-
canonical partition function. With quarks included,
however, a delicate problem arises. On a 44 lattice
(Wilson action) with 5~=0.01, a large number of
iterations —(1—2) X 10 (to be compared with 2500
for the Langevin case) were necessary before the value
of P obtained from the quark and gauge kinetic ener-
gies by the equipartition theorem agreed within a few
percent. The situation was worse on a 24 lattice for
which the two estimates of P in some runs differed by
(10—20) k even after 2&10 iterations. This trouble-
some behavior was most prominent for P around 2.0
and for small L. While it is not quite clear if these
results reflect some nonergodic behavior, it shows at
least that the microcanonical method is less efficient
than the Langevin in exploring the phase space of the

system. Furthermore, though the values of Wilson
loops and (PP) obtained near P —2.0 on a 4" lattice
are consistent with those of the Langevin simulation,
it is not clear to us how one could reliably estimate the
error associated with the mismatch of p.

The Langevin method is apparently free from these
problems of the microcanonical formalism, and we
have shown above that it, indeed, works beautifully.
We conclude by stressing that a realistic SU(3) simula-
tion (on a 104 lattice or larger) with the Langevin algo-
rithm presented in this note is prefectly feasible on
presently available vector computers with regards to
both storage and time consumption.

We are grateful to the Theory Division of The Na-
tional Laboratory for High Energy Physics for warm
hospitality and generous support for our work, to
M. Okawa for informative discussions, and to Y. Oya-
nagi for advice on programming. One of us (A.U.)
thanks Aspen Center for Physics for hospitality, where
part of this work was done, and N. Christ, Y. Iwasaki,
J. Kogut, O. Martin, and J. Polonyi for discussions.

tM. Creutz, Phys. Rev. D 21, 2308 (1980); K. G. Wilson,
in Recent Progress in Gauge Theories, Cargese Lectures 1979,
edited by G. 't Hooft et al. (Plenum, New York, 1980).

2D. Weingarten, Phys. Lett. 1098, 57 (1982); H. Hamber
and G. Parisi, Phys. Rev. Lett. 47, 1972 (1981); A. Hasen-
fratz et al. , Phys. Lett. 1108, 289 (1982).

3F. Fucito et al. , Nucl. Phys. 8180, 369 (1981).
4D. J. E. Callaway and A. Rahman, Phys. Rev. Lett. 49,

613 (1982).
5J. Polonyi and H. W. Wyld, Phys. Rev. Lett. 51, 2257

(1983);J. Polonyi et al. , Phys. Rev. Lett. 53, 644 (1984).
6G. Parisi and Y.-S. Wu, Sci. Sin. 14, 483 (1981).
7D. %eingarten and D. Petcher, Phys. Lett. 99B, 333

(1981).
8A. Guha and S.-C. Lee, Phys. Rev. D 27, 2412 (1983).
One can develop a second-order discretization by modify-

ing the Sin (2b) with addition of terms of order (A7. ) [I. T.
Drummond et al. , Nucl. Phys. 8200, 119 (1983)]. The addi-
tional term, however, involves higher derivatives of the ac-
tion of complicated form. Even worse, when quarks are in-
cluded, this method requires an inversion of quark matrices
(D ' tJD/d Ut D '

Y, see text below for notation) for
every link l on the lattice in each iteration, which is practical-
ly impossible [N. Christ, private communication].

toD. Zwanziger [Phys. Rev. Lett. 50, 1886 (1983)] also
proposed a Langevin method. Our method differs from his
in one important aspect. His method uses Y DYfor the ef-
fective quark action. In order to recover the correct distribu-
tion (detD)exp( —S), this necessitates an extrapolation in
the results whose magnitude seems difficult to bring under
control, and hence should be avoided.

~~M. Fukugita and A. Ukawa, to be published.
See, for example, J. Moser, Stable and Random Motions in

Dynamical Systems (Princeton Univ. Press, Princeton, N. J.,
1973), and references therein.


