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In the presence of arbitrary background gauge, gravitational, and antisymmetric tensor fields, the
heterotic string may be described by a two-dimensional local field theory. It is conjectured, and
verified to a certain approximation, that the conditions on the background fields for this model to
have vanishing P function are identical to the equations of motion for the massless fields. In par-
ticular, the appearance of the Chem-Simons three-forms in the classical equations of motion is
shown to be related to the chiral anomaly in two-dimensional gauge theories.

PACS numbers: 12.10.—g, 11.30.Pb

It was shown in a previous paper that in the presence of arbitrary background gauge, gravitational, and antisym-
metric tensor fields, the heterotic string may be described by a two-dimensional field theory with N = —, super-
symmetry, given by the action
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where gj is the background metric, Bi is the background antisymmetric tensor field, and A; is the background
gauge field. The X's are the eight bosonic fields, the A. "s are the eight left-handed Majorana fermions, and the
p"s are 32 right-handed Majorana fermions, belonging to the fundamental (32) representation of SO(32), or the
(16, 1) S (1, 16) representation of the subgroup SO(16) S SO(16) of the group Ea Ea, depending on which
particular type of heterotic string is under consideration. The p s are the two-dimensional Dirac matrices, the
TM's are the generators of the gauge group, and
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Although expression (1) of the effective action was derived in the weak-field approximation, I calculated the
ultraviolet-divergent part of the effective action in the theory described by Eq. (1) without making any approxima-
tion. The result is

r
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plus its W= —, supersymmetric extension. Here D denotes the covariant derivative which includes the spin con-
nection, but not the gauge connection. R is the generalized curvature defined as

~jikl ~ijkl + DkSijl DISjik + SmikS jISmilS kj ~

where R is the Riemann tensor.
It was pointed out that the criterion for the vanish-

ing of the one-loop divergence is identical to the equa-
tions of motion in the weak-field approximation. In
this paper, I propose that this correspondence holds
beyond the weak-field approximation, and that the
classical equations of motion of the full-fledged string
theory are identical to the criteria for the vanishing of
the p function in the model described by (1). Evi-
dence is produced in support of this conjecture from
the explicit one- and two-loop results for the vanishing
of the p functions in this model. First, I shall make

(6)

I

the following important observations, which will be
useful in the analysis.

(i) The action (1) transforms as

under

gi& g&/A B;,—B;,/A,

/A ( TM) ~ ( TM) /A

while all other quantities remain unchanged. Thus, in
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l-loop order, the effective action must transform as

under the transformation (S), provided that we write
down all factors of S„explicitly even though it is just
the Kronecker 5 symbol. S,rii) is said to have the con-
formal weight5 l —1.

(ii) If we set the background field B equal to zero,
and the spin connection cu constructed from the Chris-
toffel symbol I equal to the gauge connection A~,
then the action (1) reduces to that of an N = 1 super-
symmetric sigma model. t If the background is Ricci
flat, such models are known to be finite to all orders in
the perturbation theory. 6 This fact may be used to ob-
tain nontrivial constraints on the structure of the
ultraviolet-divergent terms in the present model.

(iii) Under a field redefinition,

U(X)P = exp[iT~O~(X) ]P, (10)

= —8~ G (F„,F„~ ,' F, F~ g„„). ——(12)

Since the 0 and 1 directions are flat, and Fdoes not ac-
quire any vacuum expectation values in these direc-
tions, the component of Eq. (12) in the (0,0) or (1,1)
direction is

R = —4' GF Fi'

Equation (12) may then be written as

R ~„= ( —8vr G )F F„i'.

(13)

(14)

the action (1) is mapped into a similar expression with
the A;~ replaced by A ~, given by

g iMTM

= iU(g)ii, U-'(X) + U(X)A,MT~U '(&). (11)

Hence the theories described by the gauge potentials
A I and A™are identical at the classical level. Howev-
er, since A couples to chiral fermions, the gauge sym-
metry given by (11) is anomalous. As a result, we do
not expect the P functions of the theory to be invari-
ant under this symmetry. As we shall see, this indeed
happens at the two-loop level, and is responsible for
the appearance of the Chem-Simons term (which is
not gauge invariant by itself) in the equations of
motion.

(iv) Since we are working in the light-cone gauge,
we have effectively assumed from the beginning that
the xo and the x' directions are flat, and none of the
dynamical fields acquire any vacuum expectation
values in these directions. This causes us to lose some
information from the equations of motion. This is
best illustrated by an example. Consider, for example,
Einstein's equation in the presence of a background
electromagnetic field F„„:

As we shall see, it is exactly equations of the type
(14), without the g „ terms, that shall be obtained by
the vanishing of the P function in the model described
by Eq. (1).

(Alternatively, in string theory, the graviton field
equations without the g„„terms may be interpreted as
linear combinations of the graviton and the dilaton
field equations. )

(v) In the present analysis we effectively assume the
dilaton field to be constant throughout space, in which
case it may be absorbed into the gauge coupling con-
stant. As a result, it will never appear explicitly in the
analysis.

We may now proceed to analyze the equations for
the vanishing of the P function at the one-loop level.
They may be easily derived from Eq. (5) and are'

Skm 0

Djsji = 0,
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where R;i is the Ricci tensor.
After suitable normalization of the various fields,

these equations may be shown to be identical to the
equations of motion derived from the string theory (or
the limiting field theory)8 if we ignore all terms with
conformal weight larger than 0 for Eqs. (15) and (16),
and all terms with conformal weight larger than 1 for
Eq. (17). Note that the last term on the left-hand side
of Eq. (17) appears from the term in the effective ac-
tion involving the Chem-Simons term for the gauge
field, although it appears in the equations of motion in
a gauge-covariant fashion.

Next, we turn to the two-loop calculation. In order
to simplify the analysis, we shall only evaluate the con-
tribution to the renormalization of the operators in-
volving the X' fields. Furthermore, we shall calculate
this contribution only in the presence of background
gauge fields. As a result, all terms involving BJ and
I »k are lost. Terms involving only the gravitational
fields, however, may be recovered up to terms propor-
tional to the Ricci tensor by demanding that the two-
loop counterterm must vanish when we set B=0, the
spin connection &0=A, and R;~=0. On the other
hand, any term involving the Ricci tensor, or its
derivatives, may be ignored in writing down the cri-
teria for the vanishing of the P function if we ignore
all terms with conformal weight larger than 1. This
may be seen from Eq. (15), which says that if B=0,
R;~ must be equal to terms with conformal weight & 0
at the zero of the P function. When substituted into
the two-loop effective action, this gives terms with
conformal weight & 1. Similarly, any term in the
two-loop effective action proportional to the left-hand
side of Eq. (17) may be set equal to zero in this ap-
proximation.
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In order to simplify the analysis further, we shall as-
sume that the background gauge field is Abelian in na-
ture. This will cause the loss of all the cubic and quar-
tic terms involving the gauge fields from the effective
action. We now calculate the two-loop contribution to
the effective action using the background-field

method. In doing this calculation we always first cal-
culate the fermionic loop integral. We use the exact
result'o for the fermionic determinant in the presence
of arbitrary background vector field a, coupling to a
right-handed Weyl fermion. The contribution to the
effective action for the a field from this determinant
is given by

t I

(8m) 'a 'g l' —(g +e ) (gt'l' et't'—) a .
CL 2 p. (18)

[Although the coefficient of the g ~ term in (18) is ambiguous, ' it may be fixed by demanding that if a couples
to a right-handed, as well as a left-handed Weyl fermion, the total contribution to the effective action should be
gauge invariant. ]

Since (18) does not have any ultraviolet divergences, we always get single poles in e, and the evaluation of the
graphs is straightforward. The total contribution to the effective action at the two-loop order is given by

d l
l

i [ (/M+M i(j +kBagl+ & D i(g M@M+ gMpM+ g MpM)&api1 gli) gk)
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Note the appearance of the Abelian Chem-Simons term in the above expression, which appears because of the
chiral anomaly in two dimensions. The normalization has been chosen as tr( TMT~) = 5M~.

We may now compute the two-loop P function in this model using the method of Friedan, "and write down the
condition for the vanishing of the P function. Equations (15) and (16) are replaced by

S km+ & (pe Mk g ~ mnp) 0

Di[S + & ((gMFM+ gMyM+ gMpM) ( 3 ~ a)) ] 0

with, of course, the error terms indicated in Eq. (19),
as well as terms with conformal weight ) 1. The ap-
pearance of the R2 term in Eq. (19) has been predict-
ed."

Writing down the explicit factors of K and g ab-
sorbed in S and I', respectively, using the relation
g2 —~2/o. ' and the fact that we have set o.'= —,

' in the

present analysis, and properly normalizing I' and S,
one may show that Eqs. (20) and (21) are identical to
the equations of motion for the graviton and the an-

tisymmetric tensor fields, as derived from string
theory.

Thus the present analysis indicates that there is an
exact correspondence between the equations of motion
of the string theory, and the condition for the vanish-

ing of the P function in the model described by Eq.
(1). Before concluding I wish to make the following
remarks.

(i) In this analysis, I have not considered the equa-
tions of motion for the dilaton field. Since there are
only three independent dimension-two operators in

the model described by Eq. (1) that are not related to
each other by a supersymmetry transformation, I can-
not expect to get the equations of motion for the dila-
ton field by looking at the conformal invariance of the
model. There is, however, another nontrivial con-
straint which must be satisfied by the models of this
kind, '3 namely, that the correlation functions of the
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(20)

+ + and the —— components of the energy-
momentum tensor must remain unrenormalized from
their free-field values. This constraint may reproduce
the equations of motion for the dilaton field.

(ii) The current approach may also provide a way to
tackle loop corrections in string theories. The higher-
loop amplitudes in string theories correspond to for-
mulating the string theory on world surfaces of non-
trivial topology. However, the P function of the sigma
model usually depends on the local properties of the
manifold. Hence, the constraints imposed on the
background fields by demanding the vanishing of the
P function are expected to remain valid even when we
include higher-loop corrections in the string theory.

I wish to thank W. Bardeen, H. Tye, and C. Zachos
for useful discussions.

Note added. —After submitting this paper for publi-
cation, I came to know of a related paper by Callan
et aI. ' which discusses issues similar to the ones dis-
cussed in this paper. My conjecture that the dilaton
field equation may be obtained by looking at the corre-
lation function (T++ (o-, ~) T++ (o-', v')) and de-
manding that it should remain unrenormalized from
its free-field value (or, equivalently, that the central
charge of the Virasoro algebra should remain unrenor-
malized from its free-field value) has been shown to
be correct in this paper.
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