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Monte Carlo Study of the Nematic —to—Smectic-A Transition
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A Monte Carlo simulation of a lattice model of the nematic —to—smectic-3 transition in three
dimensions shows a continuous phase transition with the specific-heat exponent o. = 0. The order-
parameter correlation functions show anisotropic critical behavior in the nematic phase, whereas
the behavior of the correlation functions in the superconducting gauge strongly indicates an isotro-
pic critical point. Several features observed in experiments are qualitatively reproduced in the
simulation.

PACS numbers: 64.60.—i, 05.70.—a, 64.70.Ew

Despite a great deal of theoretical and experimental
effort, the nature of the nematic —to—smectic-A (X-A)
transition in liquid crystals remains incompletely un-
derstood. Theoretical studies' of this phase transition
have been based on a phenomenological model pro-
posed by de Gennes, or on a dislocation-loop
model that can be shown to be equivalent to the de
Gennes model. There is as yet no theoretical con-
sensus about the critical behavior of the de Gennes
model. The most recent analysis indicates that this
model should exhibit an inverted LY transition, with
the order-parameter correlation functions exhibiting a
crossover' 8 from isotropic to anisotropic critical
behavior as the transition is approached from the
nematic side. Alternative theoretical predictions in-
clude a weakly first-order transition, and anisotropic
scaling with the correlation-length exponents para1lel
and perpendicular to the direction of smectic ordering
having the ratio 2:1. The predictions of none of these
theories are in complete agreement with all the avail-
able experimental data. ' ' The situation is made
more confusing by the fact that the experimentally ob-

served critical behavior differs from one system to
another '4 '5

For a complete understanding of the situation, it is
necessary to determine (a) whether the de Gennes
model provides an adequate description of the N-3
transition, and (b) which of the various theoretical
predictions about the nature of the phase transition in
the de Gennes model is correct. I have addressed
these questions in a numerical simulation of the ther-
modynamics of a lattice version of the de Gennes
model. The simulation qualitatively reproduces
several features observed experimentally, and thus
provides strong support to the validity of the
de Gennes model. The results also provide strong evi-
dence indicating that the phase transition in this model
belongs in the inverted-LY universality class. The ob-
served behavior of the order-parameter correlation
functions is in agreement with the gauge-
transformation analysis of Lubensky and co-
workers. ' ~

The model studied here is a straightforward generali-
zation5 of the de Gennes model. It is defined by the
Hamiltonian

H = Q, Bo(I —cosh, O;) +Do g [I —cos(A 0, —A, „)]+—,'K, g 6„'A,„
p, =x,y '

p, =xy

+ —,'K2o (A„A,y
—byA;„) + —,K3 g (A,A;„)

p, =x,y

Here 0, is an angular (phase) variable ( —~ ~ &; ~ ~)
at site i of a three-dimensional simple cubic lattice, and

A;„, p, =x,y, are real variables defined on the directed
links between adjacent sites. A„and 5„' represent right
and left lattice derivatives, respectively. The smectic
order is described by the phase variable 0 and A~ Ay

represent director fluctuations with 3, = 0. The length
scale is chosen such that the wave number associated
with the smectic order is unity. Bp and Dp represent
"bare" stiffness constants, and E&, Ez, and K3 are
the "bare" Frank elastic constants. If the splay elastic
constant, K~, is 0, then this model reduces, via a

t gauge transformation, to an anisotropic version of the
lattice superconductor model studied in Ref. 6. In the
present work, I chose the values Bp=ap= 5.0, K2
=E3 = 1.0 in order to remain close in parameter
space to the simulation of Ref. 6. The role of the splay
term was studied by simulation of the thermodynamics
for two values (0.5 and 5.0) of K~. I did not find any
significant difference between the critical properties
for the two different values of K&0.

The standard Metropolis method was used in the
Monte Carlo simulation. Typically, 1000—2000 Monte
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Carlo steps per variable were used for equilibration,
and 5000—10000 steps per variable were used for the
calculation of averages. I did not find any indication of
a first-order transition. All measured thermodynamic
quantities (the internal energy, the specific heat, and
the order-parameter susceptibility) showed behavior
characteristic of a continuous phase transition. The
results for the specific heat, C, for samples with linear
dimension L =6, 8, and 10 with periodic boundary
conditions are shown in Fig. 1. The data points shown
were obtained from a numerical differentiation of the
internal energy with respect to temperature. The
specific heat exponent, o. , of the three-dimensional LY
model is known to be close to 0. For a system with
o, =0, the specific heat in the critical region is expect-
ed' to have the form

C = —W ln(t
~ ,'Dxt/l, t—~l+—a,
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where t = (T—T, )/T, and D = 4 for the XI' model.
A plot of C vs ln(

~
T T'l/T'), —where T' ( = 6.15) is

the temperature at the specific-heat peak for L = 10
and Kt ——0.5, is shown in the inset of Fig. 1. The data
points are clearly consistent with Eq. (2). The size
dependence of the height of the specific-heat peak is
also consistent with o. = 0. However, the asymmetry
parameter D appears to have a rather small value
( = 0.25) and its sign is the same as that expected for
an LY transition. Thus, the inversion of the tempera-
ture axis predicted in recent theories does not show
up in the simulation. The reason for this discrepancy
is not clear. It may be related to correction-to-scaling
effects arising from the L~ term. It is interesting to
note that a similar behavior of the specific heat near
the N -3 transition has been observed in experi-
mentsio, &7 on systems for which o. = 0.

The most intriguing feature of the X-3 transition is
the anisotropic critical behavior of the order-parameter
correlation lengths measured in x-ray scattering experi-
ments. ' ' In the simulation, I calculated the order-
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parameter correlation function, g (r), defined by

g (r) = X 'X,. (cos(0;+,—e;) ), (3)

where (. . . ) represents a thermal average and X = L
is the total number of sites. In order to determine the
correlation lengths for T ) T„ I followed a procedure
similar to the one used in the analysis of x-ray scatter-
ing data. This procedure consists of fitting g(k), the
discrete Fourier transform of g (r), by a Lorentzian of
the form

TEMPERATURE T

FIG. 1. Variation of the specific heat C with temperature T
for KI ——0.5. The inset shows semilog plots of C for the I.=10
sample vs

~

T T*'l/T, w—here T (=6.15) is the temperature
at the specific-heat peak.

g(k) = TX
1+ (P ) )n, (k) ) +(P, )'(~ (nk) ~'+ Iny(k) I')

(4)

where X is the order-parameter susceptibility, gf~ and

P~ are the so-called x-ray correlation lengths, and

n~(k) =1—exp(ik„), p, =x,y, z, (5)

with k„=27m„/L, n„= —L/2+ 1, . . . , L/2. For k in
the ll (z) direction, the form (4) provides a good fit to
the data. However, for k in the i (x-y) plane, plots
of [g (k) ] ' vs (n„~ + ~n~ ) show considerable up-
ward curvature, and it is necessary to include an addi-
tional term, 5 ( ( n„~ + ) n~ ) ), in the denominator of
the right-hand side of Eq. (4) in order to obtain ade-
quate fits. Typical results are shown in Fig. 2. The

value of the parameter 5 increases as T approaches T, .
Very similar features have been observed in x-ray
scattering experiments. ' '5 The inset of Fig. 2 shows
the temperature dependence of the calculated value of
the ratio P~/P~ for Kto ——0.5 and L =10. The results
clearly exhibit an anisotropic growth of the two corre-
lation lengths. Large numerical uncertainties in the
values of X made an accurate determination of the ab-
solute values of g~~ and g~ impossible. ts Because of
this reason, and the smallness of sample size, I was not
able to obtain any reliable estimate of the values of the
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exponents associated with the growth of P~ and P~.
Thus, a quantitative comparison with experimental
results is not possible at this stage.

Several authors'" have pointed out the fact that
the anisotropic behavior of the x-ray correlation
lengths does not necessarily imply that the W-A critical
point is described by anisotropic scaling. The true na-
ture of the critical point is expected to manifest itself
in the behavior of gauge-invariant quantities (such as
the stiffness constants 8 and D, and the Frank elastic
constants K2 and K3) and the correlation function in
the "superconducting gauge, "defined by the transfor-
mation'

t); = @;—L;, (6a)

(6b)A;„=B;„—5 I.;, p, =xyz,
~here the variables L; are determined from the condi-
tion

X A„B;„=0. (7)

In the simulation, I calculated the correlation function
g, (r), in this gauge, defined by

g, (r) = W 'g, . (cos(@;+,—P;)).
Since all experiments are restricted to the physical

0 1 2

(a(k) I

FKJ. 2. Plots of the inverse of the Fourier transform of the
order-parameter correlation function (K I

——0.5, L= 10, T=6.2)
vs

~
alk)

~
(see text) for k in the ~~(z) direction ltriangles,

right-hand scale), and in the l(x-y) plane (circles, left-hand
scale). The solid lines are best fits with the form of Eq. (4),
with an o, term (see text) included in the fit for the perpendicu-
lar direction. The inset shows the temperature dependence of
the ratio of the two x-ray correlation lengths for K& ——0.5 and
L=10.

gauge (3;,= 0), a numerical simulation is the only way

of "experimentally" studying the properties of g, .
The large amount of computation involved in the
determination of the values of @; and 8; corresponding
to a particular configuration of the 0 and A variables
restricted the calculation of g, to samples with L ~ 8.
In this calculation, I came across a problem arising
from the smallness of the system size. It is evident
from Eq. (6) that 8, (k, = 0) =0, whereas there is no
such restriction on 8 (k) and 8~(k). This asymmetry
between the parallel and perpendicular directions is
unimportant in the thermodynamic limit; but in small
samples, it makes g, anisotropic even when %to =0.'9
In order to eliminate this spurious finite-size effect, I
carried out a set of simulations in which the con-
straints A„(k„=0)=0 and A~(k~ =0) =0 were im-
posed on the allowed values of the variables A;„.
These constraints remove the asymmetry mentioned
above, and restore the isotropy of g, (r) in the %to =0
limit. In the L =8 and L =10 samples studied, the
imposition of these constraints produces a (10-15)%
increase in the transition temperature, but does not af-
fect the critical behavior in any significant way. I
found that the Fourier transform, g, (k), of g, (r) cal-
culated in this restricted ensemble can be fitted quite
well by the Lorentzian form of Eq. (4). Results for
E& = 0.5 and T = 7.4 are sho~n in Fig. 3. Values of
the correlation lengths, g~ and g~, associated with

g, (r) were extracted from such fits. The inset of Fig.
3 shows the observed temperature dependence of the
ratio g~/g~ as the transition is approached from the
nematic side. Both g~ and g~ change by factors of
= 3 over the temperature range shown, whereas their
ratio remains constant to within 5%. From this obser-
vation, I conclude that this phase transition is
described by an isotropic critical point. This con-
clusion in turn implies' that the phase transition in the
de Gennes model belongs in the inverted-JY univer-
sality class. I have also found that the gauge depen-
dence of the correlation function [i.e., the relation
between g, (r) and g(r)] is well described by the
"decoupling approximation" proposed by Lubensky
et aI. for temperatures close to T, . These results
imply that in the W-A. transition, all gauge-invariant
quantities should exhibit inverted LY behavior, and
the x-ray correlation lengths should show a crossover
from isotropic to anisotropic behavior as the transition
is approached from the nematic side. The fact that
some of the experimental results do not agree with
these predictions remains somewhat puzzling. Cross-
over effects arising from the presence of a nearby tri-
critical point'4 '5 may account for some of the
discrepancies. A detailed calculation of these cross-
over effects would be very useful in clarifying the situ-
ation.

This study was initiated during a visit to the Physics
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FIG. 3. The inverse of the Fourier transform of the
correlation function in the superconducting gauge (Kto
=0.5, L =8, T=7.4) vs ~o. (k)~ for the parallel (triangles)
and perpendicular (circles) directions. The inset shows the
temperature dependence of the ratio of the two
superconducting-gauge correlation lengths for E ~

= 0.5
(squares) and Kt = 5.0 (open circles). T", the temperature
at the specific-heat peak, is 7.1 and 7.9 for L~ ——0.5 and 5.0,
respectively.
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