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Quasiperiodic GaAs-AIAs Heterostructures
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We report the first realization of a quasiperiodic (incommensurate) superlattice. The sample,
grown by molecular-beam epitaxy, consists of alternating layers of GaAs and A1As to form a
Fibonacci sequence in which the ratio of incommensurate periods is equal to the golden mean w.
X-ray and Raman scattering measurements are presented that reveal some of the unique properties
of these novel structures.

PACS numbers: 68.55.+ b, 61.50.Em, 78.30.Gt, 78.70.Ck

In recent years there have been many theoretical
studies of one-dimensional (1D) Schrodinger equa-
tions with quasiperiodic (incommensurate) poten-
tials. ' 3 The interest here stems partly from the fact
that the Bloch theorem is inapplicable and also that
this problem represents, in some sense, an intermedi-
ate case between periodic and disordered 1D solids.
Quasiperiodicity leads to spectra that are Cantor sets
having not only pure-point components (localized
eigenstates) and components with absolutely continu-
ous measure (extended eigenstates), but also singular
continuous components with chaotic extended states.
Unlike random or commensurate 1D solids, for which
all states are either localized or extended, quasiperiodic
potentials admit the existence of a mobility edge and
allow for a "metal-insulator" transition to take place at
a critical strength of the modulation. In addition, the
nature of the spectrum may depend quite dramatically
on the incommensurability ratio. 3

Quasiperiodic 1D potentials arise in the description
of specific properties of many physical systems such
as, e.g. , incommensurate conducting linear chains, 4

and periodic solids and superconducting lattices in a
uniform magnetic field. Experimentally, the possibili-
ty of revealing the expected richness of the problem
has, however, been very limited. The widespread ap-
plication of 1D Hamiltonians in the description of ar-
tificially grown heterostructures suggests a convenient
experimental realization of quasiperiodicity. GaAs-
Al„Ga~ „As superlattices are particularly appealing in
this respect since their parameters can easily be
tailored to meet a specific need. Although conditions
are normally chosen to achieve a periodic superlattice,
in principle, a quasiperiodic structure could be ob-
tained by imposing an incommensurate modulation of
the alloy composition or doping. It is unlikely, howev-
er, that in such a method the growth conditions could
be controlled sufficiently well as to arrive precisely at

the desired value of the incommensurability ratio.
In a recent work, Levine and Steinhardt describe a

new class of incommensurate lattices that they have
termed "quasicrystals. "8 Here, we show that an ex-
tension of their ideas leads to a simple procedure that
allowed us to grow a quasiperiodic GaAs-A1As super-
lattice with an incommensurability ratio precisely given
by the golden mean 7 = (1+JS)/2. To illustrate this
procedure, and also because of its relevance later, we
focus now on the particular subclass of 1D quasicrys-
tals that derives from the Fibonacci sequence. 7 Fol-
lowing Levine and Steinhardt, the "Bravais lattice" of
such quasicrystals is given by the set of points
z;+t =z;+r;, where (r, ) is the Fibonacci sequence of
intervals (d, d&d, d, dt, ...} with d, /d& =r. This lattice
has been shown to be quasiperiodic with two linearly
independent periods of ratio equal to r and, moreover,
to exhibit self-similarity. We find that, even for
d, /db&r, the quasiperiodic properties are preserved
although not the self-similarity. More precisely, one
can show using a recursion relation for the structure
factor that for all d, ~db, the Fourier spectrum of a Fi-
bonacci lattice consists of 5-function peaks at
k=2nd '(m+m'r), where m and m' are integers
and d =cd, +db is the "average" 1attice parameter
(this result, in a slightly different form, is given in
Ref. 7 for the particular case d, /db = r ).

The procedure to grow what we will refer to as a Fi-
bonacci superlattice now becomes clear: one needs only
to attach a basis to the Fibonacci lattice. More gen-
erally, the procedure involves defining two distinct
building blocks and having them ordered in a Fibonac-
ci manner. The building blocks can each be composed
of one or more layers of different materials and can
have arbitrary thicknesses. Obviously, quasiperiodic
superlattices with period ratios other than 7. can be
derived from other 1D-quasicrystal subclasses; all pos-
sible subclasses have been classified by Levine and
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FIG. 1. The two building blocks of the Fibonacci superlat-

tice investigated in this work. Also shown are the first four
Fibonacci generations and the rule to derive generations of
arbitrary order.

Steinhardt.
The two building blocks of the Fibonacci superlattice

grown for this work are shown schematically in Fig. 1.
Blocks A and B consist nominally of (17 A AIAs)-
(42 A GaAs) and (17 A AlAs)-(20 A GaAs). The
sample was grown by molecular-beam epitaxy on (001)
GaAs. The Fibonacci sequence can be described in
terms of a series of generations that follow the rules
indicated in Fig. 1. Our sample consists of thirteen
generations and has a total thickness of —1.8S p, m.

Figure 2 shows the x-ray diffraction pattern of the
Fibonacci superlattice for k along [001]. The spectrum
shows superlattice reflections (k & 0.7 A ') and also
satellites of GaAs(001) (at k = 2.223 A '). The
most striking feature of these data is the fact that all
but the weakest peaks occur in a geometric progression
with ~ as the common ratio. These results are con-
sistent with a numerical calculation of scattering inten-
sities which predicts the strongest peaks to lie at
k „=2md 'nr~, where n and p are integers (these
peaks and corresponding satellites are labeled [g] in
Fig. 2). From these data, we further determine that
d =rd, +db = 132.9 A which is in very good agree-
ment with the nominal value of 132.5 A. The x-ray
results can also be used to obtain an experimental
value for v-, we find v,„~= 1.630 + 0.015.

A further probe of the quasiperiodic nature of the
Fibonacci superlattice is provided by Raman scattering,
which gives insight into the phonon density of states.
Using this technique, we have investigated the spec-
trum of longitudinal-acoustic (LA) phonons propagat-
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FIG. 2. Room-temperature x-ray diffraction pattern of
the Fibonacci superlattice for k perpendicular to the layers.
The arrows with labels [g] indicate the positions of
k~„=2vrd 'n7 and corresponding satellite reflections of
the CJaAs (001) peak (the substrate and superlattice peaks
are not resolved in this order). Note that k~+ i „
= kp„+kp

ing»ong [001].' The problem of determining the
spectrum of LA phonons is of interest because, for
piecewise-constant modulations as in our case, it can be
shown to map onto the problem of solving a quasi-
periodic Schrodinger equation (this also applies to
transverse-acoustic modes which will not be con-
sidered here because their scattering is forbidden'o in
the geometry used in the experiments). The link
between the two problems is easily established if one
substitutes p;r0 /X; by 2m/t (E —V, ) in the LA wave
equation

—0) PQ =2 dp
dz dz

Here k is the Bloch index of the phonon with fre-
quency cu, n (co) is the Bose factor, q is the scattering

where p; and E; are the constant values of the density
and elastic constant for a given layer, and co the LA
frequency; m and E are the mass and eigenenergy of a
particle moving in the piecewise-constant potential de-
fined by V;.

Raman scattering by LA phonons originates in the
modulation of the corresponding photoelastic coeffi-
cient. ' In our case it is convenient to separate the
contributions due to localized and extended eigen-
states. For the latter, one can use results from Refs. 2
and 10 to obtain the following expression for the scat-
tered intensity:

I(co)~ ix„,(q —k')P„,u „„,i' [n (r0) + I]/co.

(2)
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FIG. 3. Raman spectrum of the Fibonacci superlattice
showing scattering by LA phonons propagating along [001]
[the intensity has been divided by n (r0) + 1, where n (r0) is
the Bose factor]. The features labeled [„]and [„]t~2 are dips
occurring at cu~„= ck~ „(see text) and at z r0~ „which reflect
associated gaps in the density of states. The backscattering
,geometry z(x', x')z corresponds to polarizations of the in-
cident and scattered light along x'=—[110], with the wave
vector of the incident photon along z = [001].

wave vector, and Pk, and u
k k, are the correspond-

q —k —k'

ing Fourier components of the photoelastic coefficient
and the phonon amplitude. Periodic superlattices
show nonzero Fourier components at 27rdo 'm (de is
the period and m is an integer) and the Raman spec-
trum consists of a series of discrete lines that corre-
spond to phonons with k =

~ q + 2n. do 'm ~.
'o For

quasiperiodic structures, the 8 functions of the Fourier
spectrum densely fill the real axis. Accordingly, the
Raman spectrum associated with extended modes
should be a weighted density of states with weighting
factors defined in Eq. (2). The same applies to local-
ized eigenmodes if we set k = 0 in Eq. (2).

The measured Raman spectrum of the Fibonacci su-
perlattice is shown in Fig. 3. The scattering geometry
z(x', x')z allows only LA modes. ' As expected from
the discussion above, Fig. 3 shows a continuum with
clearly resolved "dips" that we ascribe to gaps in the
density of states of LA modes. Quasiperiodic struc-
tures should exhibit an infinite number of gaps, the
principals of which are associated with the largest
Fourier components of the modulation. 3 We do
indeed find a close correspondence between the x-ray
pattern and the Raman spectrum in that the dips in the
latter occur at positions approximately given by
co= ck„„and ck~„/2 (labels [g] and [f]t/2 in Fig. 3),
with c =4.42&&10 cm/s. This is consistent with the
fact that the elastic constants of GaAs and A1As are
very similar; in a perturbation approach, ' the frequen-
cies ck~„and ck~„/2 correspond to midgap values as-
sociated with the "reciprocal lattice vectors" 2k~ „and
k~„. Further, the value of c from the experiments is
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close to the calculated value of 4.96 X 10 cm/s for the
longitudinal sound velocity of the superlattice, based
on known elastic constants of GaAs and AlAs. '0

In summary, we have demonstrated a new kind of
heterostructure: a Fibonacci superlattice exhibiting
quasiperiodic order. Preliminary results of x-ray and
Raman scattering experiments reveal striking features
associated with the quasiperiodic nature of the struc-
ture, in particular, the occurrence of spectral singulari-
ties that follow a power-law behavior. Realization of
such well-controlled quasiperiodic structures holds
promise for a wide range of experimental studies in
transport, lattice dynamics, magnetic ordering, and su-
perconducting behavior.
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Note added. —After this manuscript was submitted,
we learned of a recent paper by Zia and Dallas where a
very elegant derivation of the structure factor of
1D quasicrystals is presented. " The result k
=2md '(m+m'7) for arbitrary d, ed& can be ob-
tained by use of their projection method on a rectangu-
lar (instead of a square) lattice.
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