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Period-Doubling Lasers as Small-Signal Detectors
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Near the onset of a period-doubling bifurcation a parametrically modulated NMR laser has been used
as a detector of weak input signals with a strongly peaked response curve centered near half the modula-
tion frequency. The maximum sensitivity increases the closer the bifurcation point. A Bloch-Kirchhoff
model with realistic parameters has been used for computer simulations. Experiments and theory are in
fair agreement. The results suggest that any parametrically modulated laser device could be used as a

small-signal detector for selected frequencies.

PACS numbers: 42.60.—v, 07.58. + g, 42.50. + q

In a recent Letter! Wiesenfeld and McNamara put for-
ward the idea of a general amplification scheme for non-
linear systems near the onset of a period-doubling insta-
bility. They pointed out that any dynamical system
which oscillates at a frequency f and has a control
parameter A set close to the bifurcation value, where a
limit cycle of frequency f /2 is born, couples strongly to a
small signal with a frequency close to f/2. Thus such a
system could in principle be used as a small-signal am-
plifier in a defined frequency range.

To test this proposition experimentally, we adapted our
NMR laser,? together with its theoretical description® by
model equations, to this situation. From previous
work*—® we know that this laser exhibits period-building
cascades to chaos if one of its physical parameters is
modulated externally at a frequency near f., the relaxa-
tion oscillation frequency of the laser (=~30—80 Hz).
Both the regular and chaotic response can be modeled
fairly well by the Bloch-Kirchhoff equations which
describe the nonlinear dynamics of the system. Hence

FIG. 1. Observed period-doubling bifurcation for the NMR
laser with Q modulation of frequency f=102.7 Hz. The beat
of frequency 1.35 Hz indicates an interference with the power-
line of 50 Hz.

with the NMR laser we have a unique bifurcating system
on hand where experimental observations may be com-
pared with numerical solutions of a realistic model.

The first qualitative demonstration of the weak-signal
amplification near a period-doubling instability is shown
as an artifact in the bifurcation diagram of Fig. 1. We
modulated the Q of the cavity [Eq. (2)] with f=102.7 Hz
and strobed the laser output at equal time intervals
T=1/f. The discrete output values were then plotted
versus the swept modulation strength 4. The depicted bi-
furcation diagram differs from the usual ones by a strong
low-frequency oscillation. The beat frequency of 1.35 Hz
stems from the nonlinear coupling of the first subhar-
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FIG. 2. Experimental response curve for the NMR laser
with a parametric pump signal of frequency f=110 Hz and an
input signal of constant amplitude. The input frequency f; is
swept, the laser output is strobed with the frequency f, and the
maximal values of the beat are plotted vs f;.
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FIG. 3. Computed time plot x(z)=AM/(¢)—M(t) from the
NMR laser model equations with a parametric pump signal of
amplitude 4=0.02 and frequency f=109.82 Hz, and an input
signal of amplitude a=10"° and frequency f;=49.34 Hz.
Note that the beat frequency of 5.67 Hz equals f/2— f;.

monic of the modulation signal with a 50-Hz pickup
from the powerline. The pickup signal is usually hidden
in the thermal noise of the NMR laser. However, near
the onset of the bifurcation it is strongly amplified.

To investigate this nonlinear phenomenon in more de-
tail, we applied a double-modulation technique. In addi-
tion to the Q modulation at f=110 Hz, the NMR
linewidth was modulated [see Eq. (3)] with a frequency
close to f/2. We call the two modulation signals
parametric pump and input signal, respectively. The
laser output was strobed with the rate f, and the discrete
values were then digitized and stored in a DATA 6000
acquisition system. The maximum peak-to-peak value of
the strobed output was determined. This procedure was
repeated in computer-controlled increments of the input
frequency f;=f/2+8. A typical response is shown in
Fig. 2 for a small” input amplitude. A similar result was
observed with f;~f /4 for a period-doubling bifurcation
of period 2 period 4.

To substantiate these experimental observations the
dynamical behavior of the system has also been investi-
gated theoretically. We started from the nonlinear
Bloch-Kirchhoff equations®?

M,=—y,M,—9(CQM,—D)M, ,
M,=—y,(M,—M,)+(CQM, —D)M, ,

which provide an excellent description for a variety of ex-
periments with the unmodulated NMR laser. Here M,
denotes the nuclear magnetization along the direction of
the static external field, and M, is the perpendicular mag-
netization in the rotating frame. The corresponding re-
laxation rates are ¥, and y,. M, is the pump magnetiza-
tion, and Q is the quality of the coil. The parameters C
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FIG. 4. Computed response curves for the NMR laser model
with three different values of the parametric pump amplitude
(a) 4=0.027, (b) A=0.028, and (c) 4=0.029. The parametric
pump frequency is f=110 Hz, the signal amplitude a = 10~ %is
constant, and the signal frequency f;=f/2+86 is swept. The
critical value for period doubling is 4,=0.0301.

and D are proportional to the gyromagnetic ratio of the
laser-active 2’Al nuclei. C contains the filling factor of
the coil, and D contains an adjustable driving field to pro-
vide the proper damping of the relaxation oscillations.

To simulate our experimental observations, we intro-
duced the parameteric pump by

Q(t)=0Q[1+4sin(27ft)], (2)
and the input signal by
v (O)=v[1+asin(mft+2m5t)] . (3)

For the parameters C=24.09 mA~! s~!, D=—-6.9
X103 s~ M,=—1.6 A/m, Q=250, y,=3x10* s7},
7,,=10 s~!, and f=110 Hz, the first period-doubling bi-
furcation from a limit cycle of period 1 to period 2 occurs
at A4,=0.0301, if a=0. With A4 chosen to be slightly
below the bifurcation point 4., the M, of the period-1
limit cycle is changed by the input signal (3) to M,(1). In
Fig. 3 the calculated difference x(t)=M,(1)—M,(¢) is
shown for a =107>, which displays a beating between f;
and f/2. To relate this result to our strobed-data values,
the maximum deviation m=max[M (¢)— M (t)] was cal-
culated as a function of the input parameter & for a con-
stant value of a. In general, it was found that m is pro-
portional to a for 1074 <a < 10™*. In Fig. 4 the calculat-
ed values m /a are plotted versus the detuning frequency
8 for three different values of 4 <A4,. The resonance
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FIG. 5. Computed values of the response at resonance
m(8=0) vs the distance of 4 from the critical value 4,. The
straight line suggests a power-law dependence with an exponent
around 1.5. Deviations far from A, are to be expected; devia-
tions close to A, are due to saturation effects.

behavior which was found experimentally and predicted
in Ref. 1 is clearly seen. Note the asymmetry for larger
values of |8 | and for larger 4, — A4.

For §=0, the system exhibits a limit cycle of period 2.
The spectral Fourier amplitude P at the resonance fre-
quency f/2 was calculated for an input signal with and
without the parametric pump present. The corresponding
value P(A4540)/P(A =0) is a measure of the sensitivity of
the system to the input signal and is indicated in Fig. 4 on
the right-hand scale. This sensitivity increases roughly as
(A,—A)~'3 as the bifurcation point is approached, as
shown in Fig. 5.

The agreement between experiment and the NMR-laser
model calculations is satisfactory. Since the theoretical
model® can generally be used to describe homogeneously
broadened single-mode two-level lasers, we propose that
lasers in the optical and microwave region will exhibit a
similar behavior. Thus period-doubling laser devices may
be used as small-signal detectors for various frequencies
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in the range 1—10° Hz. The modulated systems offer the
advantage that the amplitude and frequency of the
parametric pump are controllable parameters which
determine the center and the width of the response curve
within certain limits.

We come to the conclusion that the propositions put
forward by Wiesenfeld and McNamara have been proven
experimentally with a nontrivial physical system of great
potential. Further investigations are under way with
lasing systems where period doubling is a generic
phenomenon such as in detuned lasers with an injection
field. >~ 1
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