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Diffusion-Controlled Annihilation in the Presence of Particle Sources:

Exact Results in One Dimension
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The steady-state particle density n and the relaxation time ~ of homogeneous density fluctuations are
calculated for one-dimensional systems in which particles move diffusively and annihilate irreversibly,
and steady sources of either single particles (model I) or pairs of neighboring particles (model II) are also
present. For small particle-production rates h, we find n -h ' and ~-h with 6=3, 5= 3 for model

I and 6=2, 6= 1 for model II. If we interpret particles as solitons, model II is used to account for some
aspects of the experimental data on the photoinduced absorption of trans-(CH)„.
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The principles of equilibrium statistical mechanics are
well established and progress in describing near-
equilibrium relaxational processes has also been remark-
able. ' Little is known, however, about the properties of
systems which are either in or relaxing towards a far-
from-equilibrium steady state. Given the importance and
the difficulty of these nonequilibrium problems, one often
tries to develop and study simple model systems which
are mathematically transparent but at the same time show
some resemblance to actual processes occurring in nature.
In this paper, two such model systems will be considered
and the exact calculation of the relevant steady-state and
relaxational properties will be outlined.

The basic process is the same in both models. Particles
execute a random walk (with hopping rate I per unit
time) along a one-dimensional lattice and annihilate if
they land on the same site simultaneously. This system
would evolve into a trivial, completely empty state in the
long-time limit ( t ~ Oo ) and therefore to make the steady
state more interesting we assume that particle sources are
also present. The two models we consider are distinct in
the mode of production of the particles. Single particles
are created at a rate of I h per lattice site in model I. In
model II, on the other hand, the particles are produced in
pairs at nearest-neighbor lattice sites and the rate of pro-
duction is I h per adjacent pair of lattice sites.

Model I may be regarded as a first approximation to
the kinetics of the reaction A +A ~0 in a one-
dimensional chemical reactor with steady inflow and out-
fiow of particles. It may also be viewed as a reference
model for a class of aggregation processes which display
common scaling properties. For example, one-di-
mensional models of aerosol formation describing cir-
cumstances when the aggregation centers are generated by
photo-oxidation and sedimentation processes make the
larger clusters disappear from the system are expected to
be in one universality class with model I.

Model II is more closely related to a real system. In
trans-polyacetylene, soliton-antisoliton pairs can be gen-
erated by photoexcitation. The solitons and the antisoli-

n(h)-h'rs, r(h)-h

with

5=3, b, = —, (model I),
5=2, b, = 1 (model II) . (3)

These results are in agreement with the available Monte
Carlo data. They also support the recently developed
scaling theory of aggregation in which the h ~0 limit, is
considered as a critical point, h is regarded as an external
field conjugate to the order parameter, and the order
parameter is identified with the cluster density (particle
density in our case). The scaling form suggested by this
theory [n(h, t)-h'r p(ht'r ) with p(x)~g(ao)=0 for
x —moo and P(x)~x '~ for x~0] is motivated by a

tons are quite free to move along one-dimensional chains
and at elevated temperatures they execute a random walk
under the influence of thermal fluctuations. Further-
more, since solitons alternate with antisolitons in this sys-
tem, every meeting of two excitations results in annihila-
tion. Thus identifying the solitons and antisolitons with
the particles in model II one can see that, apart from the
interactions between the soliton-antisoliton pairs, this
model accounts for the essential features of the excitation
dynamics of trans-(CH)„.

It is intuitively clear (and can be proved for finite
chains by making use of the Markovian nature of the
processes ) that in the limit t~ oo, both models I and II
approach a steady state in which particle production is
balanced by diffusive annihilation. This steady state and
the relaxation towards it will be characterized on a mac-
roscopic level by calculation of the steady-state particle
density, n, , and the relaxation time, ~, governing the
long-time decay of homogeneous density fluctuations.
Both n and r are functions of the relative feed rate, h,
which is the only control parameter in the system (the
hopping rate I just sets the time scale). Our results for
n(h) and r(h) are particularly simple in the small —feed-
rate ( h ~0) limit where we find
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scaling generalization of the Smoluchowski equation and
it yields not only Eq. (1) but it also predicts that, at h =0,
the density of particles n decays with time as

n(h =O, t)-t (4)

where g is related to 5 and b, through b,g= 1/5. At h =0,
models I and II coincide. The corresponding problem of
diffusive annihilation has been investigated extensively
and the power-law decay [Eq. (4)] with g= —,

'
is known to

be an exact result. Hence one can conclude [see (2) and
(3)] that the scaling law 6/=1/5 holds for both models
and, thus, one finds support for the view that the scaling
description around the point h =0 is valid quite generally.
The scaling theory also yields a scaling relation,
5+1/5=1, which is less general. It is predicted to be
valid only for model I where the kinetic coefficient in the
generalized Srnoluchowski equation describing the pro-
cess is argued to be nonsingular in the h~0 limit. As
can be seen from (2), this prediction is also verified.

As in the case of critical phenomena, the components
5, b., and g are expected to be universal with respect to
the details of the interactions; e.g., adding short-range in-
teractions to the contact interaction present in models I
and II should not change the value of the exponents.
Thus we may assume that the results for model II can be
compared with experimental data on trans-polyacetylene.
In this system, the magnitude of the photoinduced ab-
sorption at appropriate wave numbers is presumed to be
related to the density, n, of the photogenerated solitons.
Experiments' show that, for small incident photon flux
I, the steady-state density n increases as n -I in agree-
ment with our 5=2 result [Eq. (3)j. Furthermore, the in-

stantaneously induced bleaching is observed"' to decay
in the picosecond range as t 'r . If this decay is due to
the annihilation of the soliton-antisoliton pairs then, as
discussed in Refs. 9 and 12, the diffusive annihilation
model (h=O limit of model II) implies the observed t'~
behavior. Encouraged by these agreements we now make
a prediction on the basis of Eq. (3). Namely, the result
6= 1 means that, after one switches on the photon flux,
the density of solitons and, consequently, the photoin-
duced absorption attain their steady-state value with a re-
laxation time ~ which diverges as I ' in the small flux
limit. To our knowledge this relaxation time has not been
measured yet. Clearly, if scaling (r-I ') is not con-
firmed by experiment, then alternative routes to soliton
decay would have to be explored.

Now we turn to the derivation of results (2) and (3).
The basic idea is the following. The particles are identi-
fied with the domain walls in the kinetic Ising model and
the spin-flip probabilities are chosen so that the domain-
wall dynamics will correspond to the particle dynamics of
models I and II.

More precisely, we consider a system whose state

t o j—:I. . . , o;, cr; + &, . . . j is specified by the stochastic
spin variables cr;(t)=+1 assigned to lattice sites labeled
by an integer —~ &i & ~. The correspondence between
the spin and the particle configurations is given through
the bond variables n; =(1 o;cr;+, )/2. S—ite i is assumed
to be occupied by a particle if n; =1 (i.e., if there is a
domain wall between sites i and i + 1) and is regarded to
be empty otherwise (n;=0). The dynamics of the spin
and, consequently, of the particle system is described by
the probability distribution P(Icr j,t) satisfying the fol-
lowing master equation:

oo 2

P(Icrj, t)= Q g [w '(Io j; )P(Io j;,t) —w '(to j)P(Io j,t)j .
i =—00 a=1

(5)

Here the state Icr j,' differs from to j by a flipping of the
ith spin and the flipping rate is given by

w;"'(Io j)=—,
' I [1——,ycr;(o;+i+a; i)] .

If no other spin-flip processes are present (w; =—0) then(2)

(5) and (6) define the exactly solvable kinetic Ising
model' which relaxes to the equilibrium Ising model at
temperature T provided y =tanh(2J lk T) where J is the
strength of the nearest-neighbor coupling. The implica-
tions of this spin-flip dynamics for the motion of the par-
ticles are especially simple at T =0 (y= 1 ). The particles
move to left and right with equal rates I /2 and two
nearest-neighbor particles annihilate at a rate I. Thus
the T=O limit of the kinetic Ising model gives the h=O
limit of models I and II.

To introduce the single-particle sources we assume that
Icr j; in (5) differs from I o j by the simultaneous flipping
of all the spins oi, 1 (i, and that the rate of flipping is

w '(joj)=I h .

The above process creates particles homogeneously at a
rate I h per site and this process also obeys the rule that
particle creation at an already occupied site is equivalent
to emptying that site. Thus (5), (7), and (6) with y = 1 de-
fine a kinetic Ising model which generates the particle
dynamics of model I.

Since there is no mechanism in this model which could
produce an inhomogeneous steady state, the calculation of
n and z involves only translationally invariant states.
Thus we shall assume that the initial distribution
P(Io j,O) and, as a consequence, P(Icrj, t) at arbitrary t
is translationally invariant. Then the average particle
density n (h, I t) can be written as

n (h, I t) =(1—(o;o;+i) )/2,

where the angular brackets denote averaging with respect
to P( I o j,t) The spin cor. relation function (o;cr;+ ~ ) can
be calculated because the two-point correlation functions
rk(h, l t)=(o.;o;+k) satisfy a closed set of linear dif-
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ferential equations. These equations are easily derived
following the steps of Glauber's paper. ' The result for
k~O is

I 'r'« r« ——~+ r«+ &

—2(1+hk)r«, (9)

while for k=O we have ro ——(o; ) =1 and for k&0,

The stationary solution r«(h) which is finite in the lim-
it k~ oo is found by setting r'« =0 in (9) and comparing
the resulting equation with the recurrence relation satis-
fied by the Bessel functions' J,(z) of the first kind of or-
der v:

0=J„ i (z) +J„+i (z) —(2v/z) J„(z) . (10)

—2A, I"t
~k ~k +'eke (13)

Substituting (13) into (9) one finds that the set of equa-
tions for q« is the same as that for r«except that 1 + kh

is replaced by 1 —A, +kh. Hence a comparison with (10)
yields q«

——AJ„, «,„,(h ) and the "boundary" con-

dition qo
——0 following from ro=ro 1 gives the equa——tion

which determines the possible values of A, :

(14)

All the solutions A.;(h) of this equation are greater than
zero since the zeros j;" of J„(z) on the positive real axis
satisfy' the inequality v &j; . Consequently, all the
homogeneous density perturbations decay with time ex-
ponentially. The analysis of the limit h~0 is again car-
ried out by using the limit v—+ oo of J„(v+zv'/ ). In this
limit, Eq. (14) transforms into

Ai[ —2'"h -'"k/(1 —X)'/'] =0 (15)

and using the fact that the zeros of the Airy function,
Ai(aj ) =0, are on the negative real axis (aj &a& &0) one
can conclude that (a) in the limit h ~0 no solution AJ of
Eq. (15) approaches zero faster than h / and (b) there is
an infinite set of A, which goes to zero as
AJ =2 '

~ a~ ~
. The relaxation time which governs

the long-time decay of homogeneous density fluctuations

This comparison yields r«(h) =CJ««&(h ') and the ar-

bitrary constant C is determined from the condition
ro(h)=1 giving C '=J«&(h '). Substituting these

results into (8) we obtain the steady-state density

n(h) =[1—J, «, (h ')/J«)(h ')]/2 .

The small-h behavior of n can be found by noting that
for v~ao, J„(v+zv' )=2' v ' Ai( —2' z)+O(v ')
where Ai(z) is the Airy function. ' The result is

A' 0
n =—,h'/ =0.4593h'/ ,(12)2'"Ai(0)

'

yielding 5=3 as quoted in (2).
To obtain the relaxation times of homogeneous density

fluctuations, we seek solutions to (9) in the form

y=(1 —h)/(1+h), 0&h & ce, (17)

in (6). The dynamics of the corresponding particle system
(model III) consists of the following processes: hopping
to left and right with the rate I /2, annihilation of neigh-
boring particles at a rate I /(1+h), and production of
nearest-neighbor particles at a rate I h /(1+6). For small
h, this is just the dynamics of model II. At larger h the
rate of the annihilation of the neighboring particles is re-
duced with respect to the rate of hopping. This delay in
the hopping of neighboring particles towards each other
might be interpreted as the appearance of an effective
short-range repulsion between the particles. Such a
short-range interaction is not expected to generate a
difference between the scaling properties of models II and
III especially since the interaction disappears in the limit
h ~0.

The small-h behavior of n and r in model II can now
be obtained from model III which is the exactly solvable
kinetic Ising model with y=tanh(2J/kT) related to the
rate h of the particle production through Eq. (17) yielding
h =exp( 4J/kT). —Since the kinetic Ising model relaxes
to the equilibrium Ising model, n is determined by the
equilibrium correlation (o;a;+ & ),~=tanh(J/kT) with
the result

n h 1/2/(1+h 1/2) h 1/2 (18)

implying 5=2 as claimed in (3). The calculation of r is
also simple since (o;cr;+&). is proportional to the energy
of the Ising model and we need only to determine the
long-time decay of homogeneous energy perturbations.
This has been done' and for the slowest mode of decay
one has

~-'=2r(I —y) =4rh/(1+h) =4rh, (19)

yielding b, = l. This completes the derivation of results
(2) and (3).

Finally, we note that the steady-state distribution func-
tion

P, (tn] )=P, (. . .,n;, n;+&, . . . )

for the particles in model III can also be calculated since
it is just the distribution function of the corresponding Is-
ing model,

P, ( I u] ) =Z -' exp[(J/k T) g, ~;~;+)]

expressed in terms of the bond variables n; as follows:

P, ( I n ] ) =PI({n ] ) = +,. exp(a +bn; ) (20)

is then determined by the smallest among the AJ'

=2
~
a)

~

I h =3.7115I h

and so we have the results b, = —,
' [Eq. (2)].

Turning to model II, consider the spin dynamics de-
fined by setting w '=0 in (5) and choosing
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with a = —ln(1+h' ) and b =1nh'~ . Thus the steady
state can be described in terms of independent two-state
objects which are in equilibrium with a heat bath. This
means that the detailed-balance condition is satisfied in
this steady state. While detailed balance is a necessary
feature of equilibrium processes, its appearance in a non-
equilibrium stationary process is unusual. In this sense,
model III defines a rather uncommon nonequilibrium
dynamics and it would certainly be more valuable if one
could calculate the steady-state distribution for model I
where the possibility of detailed balance is excluded by
construction.
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