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Complement to the Wigner-Kirkwood Expansion
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We extend the region of applicability of phase-space techniques, for the study of quantum systems, by
developing an expansion for the Wigner distribution function and correlation functions, in powers of an
interaction potential. These results are not restricted to the near-classical regime (expansion in powers of
A), in contrast to the Wigner-Kirkwood expansion. The relation to other perturbation methods
(Lindstedt-poincare, Green's function) is explored.

PACS numbers: 03.65.—w, 05.30.—d

Quantum distribution functions, first introduced by
Wigner, ' provide a means of studying quantum mechani-
cal systems while still employing a phase-space frame-
work. In particular, for a canonical ensemble, the
Wigner-Kirkwood (WK) expansion' provides a method
for obtaining quantum corrections expressed in powers of
R (near-classical regime). Here we investigate the possi-
bility of the use of distribution function techniques to ob-
tain results not restricted to the near-classical regime, in
contrast to the WK approach. We find that it is possible
to go beyond the WK expansion in one respect, by
developing instead an expansion in powers of an interac-
tion potential, for the distribution function and —even
more significantly —for the correlation function. Howev-
er, since the WK method does not assume a weak interac-
tion potential (although it must be smooth), our results
should be viewed as a complement of the WK method in
that we have extended the region of applicability ofphase
space techniques for the study of quantum systems

A wealth of information regarding the equilibrium and
dynamic properties of a system may be derived from
correlation functions of the form

C»(t)= —, (A(t)A(0)+A(0)A(t)),

where A(t) =e' '~"Ae' 'r" is a Heisenberg operator and

(0 ) =Tr(pO), P being the density operator for a canoni-
cal ensemble at inverse temperature P:

p =e
—&~/Tr(e -t'H) (&)

(H is the Hamiltonian). In condensed-matter physics

Czz (t ) is commonly obtained from the temperature
Green's function

G(o.) = (T[A(o.)A(0)]) (3)

where q and p denote classical coordinate and momentum
(all integrations extend from —oo to + Do unless other-

[where A ( cr )=e Ae and T is the time-ordering
operator] via analytic continuation. An alternative
method for the computation of correlation functions
makes use of the Wigner distribution function (WDF).'
This approach has been used to find the quantum correc-
tions (i.e., the near-classical limit) to transport proper-
ties, but does not appear to have been widely applied
otherwise. In particular, the important problem of
developing a perturbation theory for the WDF is largely
unexplored. The purpose of this work is to present new
results concerning the evaluation of correlation functions
by use of the WDF. An important feature of our discus-
sion is the avoidance of the WK expansion, so that the
validity of our results is not restricted to the near-classical
regime.

First, we examine how the WDF may be used to deter-
mine time correlation functions for a canonical ensemble.
The formal expression of Eq. (1) in phase-space language
was given some time ago by Hynes et a/. , who showed
that

C~z (t)

=f dq f dp [P~(q,p;P)cos( —,'A'A)A~(0)]A~(t), (4)
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(6)

0 (q,p)=2 f dy &q —y ~

0
~

q+y&e "»'",
so that

f dq f dp 0 (q,p)P (q,p)=Tr(pO). (g)

In addition, we note from Eqs. (5) and (7) that P~ is
(2vrfi) ' times the phase-space function corresponding to
the density operator. If 0=0(q), then 0 =0(q), and
similarly for 0(p).

The time dependence of A~(t)=—[A(t)) is governed
by1, 3, 8

(7)

()A
=iLA„(t)

at

p a 2. aa——sin — V(q ) A, (9)
m Bq A 2 3q 3p

w1se specified),

P.(q,p,P)=(~) ' f dy&q —y IPlq+y&e"'
is the normalized WDF, and

c)

-ap Bq aq ap

the arrows indicating the direction of operation. [In Eq.
(4) A operates only on the quantities within brackets. ] By
O~ we denote the phase-space equivalent of the operator
0,

so that, formally,

A~(t)=e' 'A~. (10)

C(t) = —,
' &q(t)q(0)+q(0)q(t) &

=fdq f dpP~(q, p;P)q(0)q(t)

dq dp P q,p, qe'~'q. (12)

For the Hamiltonian, Eq. (11), the Liouvillian may be
written

In the second term of Eq. (9), the 8/Bq is understood to
operate only on the potential, V(q).

In all but the simplest cases (free particle, harmonic os-
cillator), H is such that neither A„(t) nor P~(q,p;13) may
be evaluated exactly. We shall be interested in the case

H =Kp+AH' =P /2m+ Vp(q)+AH'(q),

where P~ '(q,p;P), the WDF corresponding to Ho, is
known exactly. We shall develop an expansion for the
correlation function in the coupling A,.

We shall avoid making an additional expansion in
powers of A'. Thus the validity of our results will not be
restricted to the nearly classical regime. For simplicity
we consider the correlation

iL = ——sin — — [Vo(q)+AH'(q)]=iLo+iAL'.
n (3 2 . A' 8
m 3q A 2 BqBp

(14)

&q(s —iLp) 'iL'(s iLp) 'q &„—J(s)=&q(s —iLp) 'q&„1+1, , +. . .
q(s iL p) 'q—

Since Lo and L' do not commute, the expansion of e' ' in powers of A, is not straightforward. We therefore turn our at-
tention to the Laplace transform

Z(s)= f "dte "C(t)=f "dt f dqdpP (q,p;p)qe' ' "q=&q(s iL) 'q&, —
0 0

where the angular brackets now denote a phase-space average with respect to the WDF. The perturbation expansion of
(s iL) ' is fur—nished by the "resolvent expansion" of kinetic theory. Then, using Pn(q, p;P) to denote the WDF
correct to nth order in the coupling A, „and & &„ to denote a phase-space average with respect to P„, we find after some
algebra that

&q(s iLo) 'iL'. . . —(s —iLo) q&o+gn
' '

+0(gn+1)
&q(s iLo)-'q &, — (15)

which is our formal expansion for the Laplace transform of the correlation function. We turn now to the evaluation of
P„.

For the following discussion it proves convenient to work with an unnormalized WDF,

Q~(q,p;P) =—(e ~ )

Then

P (q,p;P)=Q (q,p;P)/ f f dq dp 0 (q,p):0(q,p;i3)/2mB'Z(—P),

(16)

(17)

where Z(P) is the partition function and Q~ satisfies the Wigner phase-space equivalent of the Bloch equation.
Our problem is to evaluate Q~(q,p;P) = [exp[ P(Ho+AH' )]I, where 0—' ', the WDF corresponding to Hp, is
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known. Since Ho and H' do not commute, the exponential cannot readily be expanded in powers of A, . We may, howev-

er, use as our starting point an expression familiar from the temperature Green's-function formalism,

e ~ =e 'U(P 0) (18)

where

P- tt P
U(P, O)=1 —A, f H'(o) do+.

, f do i f do~ T[H'(oi)H'(o~)]+. . .

where

+ f doi . f der„T[H'(oi) . . H'(o„)]+. . . ,
( g)li p p

(19)

H(cr) =e H'e (20)

is the perturbation in the "interaction picture, " and where T is the time-ordering operator.
We may now use Eqs. (18) and (19) and the well-known rule for the Wigner translation of an operator product to write

Q (q,p;P)=Q' '(q,p;P)e r '[U(P, O)]

=Q~' 1 —Ae ' f der [H'(o)]~+. . . (21)

When Eqs. (17) and (21) are used in conjunction with Eq. (15) we have our desired result, viz. , the expansion of the La-
place transform of the correlation function in powers of the interaction potential.

As an illustration of our results we consider the one-dimensional anharmonic oscillator, i.e., Vo(q) = —,
'

mcooq and

(22)

Then, after some algebra, Eq. (15) reduces to

J(s)=(q )i 2 1 —
2 2 2 +O(A, ),

s +choo (s +roo)m(mroOA)
(23)

where

3 = (2/fuuo) tanh(Pficoo /2). (24)

Now, in the direct Laplace inversion of this expression, the term -A, is secular ( ~ t sincoot). To avoid the appearance of
a secular term, we interpret the correction term as leading to a renormalized frequency ro~. That is, we write

J(s)=(q )i +O(A, )=(q ), +O(A, ),
s +choo 1+12K,/m(mrooA)(s +coo) S +Cog

(25)

where

roy ——coo+ 12K,/m(mcooA )+O(A, ). (26)

At this stage, some comments are in order. First of all,
we stress that, whereas there are an infinite number of
functions which reduce to first order to Eq. (23), the
choice given in Eq. (25) is unique in the sense that it satis-
fies the demand that it has exactly the same form as the
A, =0 result except that cop is replaced by co+.

Secondly, it should be further emphasized that the
technique we have outlined is not confined to the example
shown. In all cases the secular term (which grows with
increasing t no matter how small A, is) must be reinter-
preted and, of course, this is physically reasonable since
one expects that the frequencies associated with a particu-
lar motion will be changed when one superimposes an in-
teraction. While we cannot give a general proof that fre-
quency renormalization can always get rid of divergences

p~o6 =Q)g —COp= coth
m cop 2m~p 2

(27)

The choice of absorbing the correction term in Eq. (23)
into a renormalized frequency is analogous to the
Poincare-Lindstedt approach' in nonlinear mechanics.
In the latter method the frequency is chosen so as to

I due to secular terms, we have not been able to find a con-
trary example.

Thirdly, the question might be asked as to whether it
might be possible to modify the expansion in Eq. (15) so
as to obtain the above results more directly. The answer
is that a modification of Eq. (15) does not simplify the
problem in general.

We now return to the specific example considered.
From Eq. (26) we see that the first-order frequency is
thus
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avoid a secular term in the motion. The manipulations
leading to Eq. (25) are also reminiscent of the introduc-
tion of the self-energy in the Green's-function method.
A previous calculation" using the WK method resulted
in the first two terms of an expansion of Eq. (27) in
powers of A'. We have repeated the calculation using
Careen's-function techniques and obtained the same result.
However, the latter method involves, as is usual, the full
machinery of quantum field theory and the evaluation of
connected diagrams in the Wick expansion. By contrast,
the phase-space distribution method calculates the same
quantum corrections in a "classical-like" derivation.

We turn next to the three-dimensional anharmonic lat-
tice problem which, of course, is considerably more com-
plicated per se no matter what method of approach is
used. For this reason, we will omit the details and simply
state that we have been able to reproduce the results of
Maradudin and Fein' (obtained by use of Green's func-
tion) by means of the method described above.

In summary, the WDF has been shown to provide an
alternative method for the evaluation of correlation func-
tions, one which may in certain instances prove simpler
than the Green's-function approach. We have shown how
to express the WDF in powers of a perturbing potential,
without resorting to an expansion in powers of A'. Expli-
cit evaluation of the correlation terms may be tedious, but
for many applications the full details of the WDF are not
required. For example, the first-order frequency shift
given by Eq. (26) only required an evaluation of the un-
perturbed distribution function.

The method we have presented goes beyond the WK
method in that an expansion in fi is not required. Howev-

er, the latter method retains its usefulness in situations
where an expansion in powers of a perturbing potential is
not feasible and where one is in the near-classical regime.
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