Lawrence, Thompson, and Chen Respond: The key new experimental result reported in our paper is the existence of a temperature scale of order 40 K in $CePd₃$. In the paper we identified this scale as the coherence temperature, but Mihalisin and Crow (MC) rightly point out that the onset of coherence can already be observed at $T_{\text{max}}=125$ K. To clarify our main point, then, we should perhaps speak of three energy scales in CePd₃: the high temperature T_K , the temperature T_{max} , which signals the onset of coherence, and the temprature $T_2 = 40$ K below which further anomalies occur, including the growth of the $5d$ contribution to the $4f$ form factor.

Evidence for this scale comes primarily from (a) the radically different pressure dependence of the resistivity above and below 40 K and (b) the existence of two maxima (one at $T=0$ and another at T_{max}) separated by a minimum in the resistivity of $Ce_{0.97}La_{0.03}Pd_3$ alloys. If alloying destroyed coherence on the scale T_{max} , we would expect only one maximum; the existence of the minimum implies that two different mechanisms affect the resistivity at low temperatures.

To date we have studied the resistivity of $CeM_xPd₃$ alloys for $M = La$, $x = 0.03$, 0.06, and 0.09 and for $M = Y$, Sc, $x = 0.03$. Our data agree with that of Schneider and Wohlleben¹ and differ from that of MC^2 in two significant respects. First, MC do not observe the two maxima for $x=0.01$ and 0.03. Second, the MC data are identical for $x=0.01$ to 0.04, while our data and those of Schneider and Wohlleben show $\rho_0(x)$ to vary strongly in this range of x, saturating for $x \ge 0.06$. Therefore, we disagree that an "additiveimpurity" model is irrelevant for $x = 0.03$.

On the other hand, the resisitivity is virtually identical for different solutes $(M = La, Y, Sc)$ at fixed x: $\rho_0(x)$ has the same value¹ and our recent work shows that for $x = 0.03$ the temperature dependence
 $\left[\rho = \rho_0 [1 - (T/T_*)^2] \right]$ with $T_* \sim 40{\text -}50$ K) is identical for the three solutes. It is the absence of a cerium atom from its appropriate site that governs the alloy resistivity. Such a situation can be described by the Hamiltonian given in our paper: a pure Anderson lattice plus a "Kondo-hole" term. In retrospect, we realize that the terminology is unfortunate since it is easy to show for a Kondo (as opposed to Anderson) lattice that the hole term has the wrong sign to give a Kondo effect. Nevertheless, if the heavy quasiparticles carry

the electric current, they will be strongly scattered by
such a "cerium sublattice hole." and the effect will such a "cerium sublattice hole," and the effect will disappear when the heavy fermions renormalize away at high temperatures. Both the observed T^2 coefficients and the existence of a minimum near 40 K in the alloys suggest this effect occurs on the scale T_2 .

Most studies³ of CePd_{3+y} show a large residual resistivity ρ_0 when $y > 0$ and a vanishing ρ_0 for $y < 0$. resistivity ρ_0 when $y > 0$ and a vanishing ρ_0 for $y < 0$.
Our explanation of this is that when $y > 0$ there will be vacancies or Pd atoms on the cerium sublattice, causing strong scattering. ($AuCu₃$ disorder due to excessive annealing can cause the same effect.¹) When y is small in $Ce_{1-x}M_xPd_{3+y}$ these effects can dominate the reistivity; perhaps this is why MC observed only one maximum and no variation of ρ_0 with x. We compensated by making y slightly negative.

Such large effects per solute atom are *not* necessarily expected in other systems. As pointed out in our paper, $CePd₃$ is unusual in having a very low density of carriers at ϵ_F . The resistivity will be affected more profoundly by the $4f$'s than in, say, CeSn₃ where there exists a healthy density of Sn s -p electrons to shunt the f channel.

J. M. Lawrence

Y. Y. Chen Physics Department, University of California Irvine, California 92717

J. D. Thompson Los Alamos National Laboratory Los Alamos, New Mexico 87545

Received 7 August 1985

PACS numbers: 72.15.Qm, 62.50.+p, 75.20.Hr

¹H. Schneider and D. Wohlleben, Z. Phys. B 44, 193 (1981).

2P. Scoboria, J. E. Crow, and T. Mihalisin, J. Appl. Phys. 50, 1895 (1979).

3M. J. Besnus, J. P. Kappler, and A. Meyer, J. Phys. F 13, 597 (1983); H. Sthioul, D. Jaccard, and J. Sierro, in Valence Instabilities, edited by P. Wachter and H. Boppart (North-Holland, Amsterdam, 1982), p. 443. Our data for $y = -0.12$, -0.02 , -0.01 , $+0.04$, and $+0.09$ agree with those of these two reports. Curiously, the MC data shown in Ref. 2 have the opposite sign, i.e., large residual resistivity for negative x.