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The stroboscopic map of symmetric self-oscillators driven by pulses of alternating sign is con-
structed, for the regime of strong relaxation, by means of the so-called phase-transition curve. An
ordering for the symmetries of the phase-locked orbits is found which is conjectured to be univer-
sal. Both results are illustrated by an exactly solvable example of such a system. When the approx-
imation fails, unusual period doubling from symmetric orbits and strange attractors of two-

dimensional structure are encountered.

PACS numbers: 05.45.+b, 03.40.—t, 05.40.+j

Nonlinear oscillators periodically excited by pulses
of constant amplitude, short enough to be simulated
by & functions, appear in several experimental and
theoretical situations in physics,! chemistry,? biology,?
and other sciences.* In the strong-relaxation regime,
the dynamics of these models is very accurately
described by a one-dimensional Poincaré map which
can be constructed if we know the phase-transition
curve (PTC),’ i.e., the effect on the phase of the oscil-
lation produced by an isolated pulse. In this way the
general behavior (phase-locking structure, transition
to chaos, etc.) has been (and is being) widely studied
and understood. However, and despite the many pos-
sible applications, no work has been done in order to
apply this method to the treatment of more general
pulsatile driving forces. Especially interesting is the
case which consists of a sequence of pulses of equal
amplitude and equally spaced but of alternating sign.
These forces can appear in electronics, biology (polar-
izing and depolarizing effect of stimuli), far-from-
equilibrium chemical reactions (periodic input and an-
nihilation of reactants), and so on. The purpose of
this Letter is threefold. Firstly, we show how the pres-
ence of a symmetry allows us to use the PTC for the
dynamical description of a nonlinear oscillator driven
by alternating forces. Secondly, we numerically check
the method in an exactly solvable model whose
behavior under equal-sign periodic 8 forces has been
previously studied.® In this model, we also find, for
certain parameter values, the unusual presence of
period doubling from a symmetric solution without a
symmetry-breaking precursor. Finally, we give a
universal ordering of the symmetry of the periodic
solutions which is related to the Farey tree construc-
tion.

Let us consider a driven self-oscillating system
described by

x=y;
oo (1)
y=r(y)+ Ve 3, (=1)"8(t— nTg/2),

n=0

where Vi and wg=2m/ Ty are the amplitude and fre-
quency of the external force and f(—x, —y)
= — f(x,y). When Vy;=0, (1) is assumed to have a
limit cycle which is symmetric, whereas if Vy=0 (1) is
invariant under (x,y,0) — (—x, —y,t+ Tg/2). It is
easy to show that the Poincaré (stroboscopic) map P
can be written_as the second iteration of another
transformation P :

P=P=Po P;

P(X,y) - —7Jo Ptt(§)+TE/2

)
(xy),

with P,’o (x(19),y(t9)) = (x(#),y (1)) being a solution
of (1) and 7 the 2x2 unit matrix. If at =ty a pulse is
applied, P,t0+ &2 pecomes the Poincaré map of (1)

without the factor (—1)”in the external force. In the
strong-relaxation regime the stroboscopic map degen-
erates into a transformation of the limit cycle on it-
self.%8-10 Moreover, the map can be written now as a
function which only depends on the phase of the oscil-
lation just before each pulse. Thus

to+ Tp/2
Pt(;) £ (X,y)
to+ Tg/2

)

(¢0) =g(¢>0, VE) +w0TE/2, (3)

where ¢, is the mentioned phase, g is the PTC which
takes into account the change of the phase due to an
isolated pulse, and wg is the proper frequency of the
oscillator.

As a result of the symmetry of the limit cycle the
— I operator in (2) is represented, in this approxima-
tion, by a shift of 7 in the phase ¢. Thus, the map
0= Q2 which describes the dynamics of the system
with the alternating pulses is obtained from

to+ Tp/2

Or,.v,(¢)=—1°Q° (¢)
=g, Vg) +woTg/2+m

=g+w0(TE+ To)/2 (4)
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Periodic solutions of (1) or, equivalently, periodic
points of P can be now investigated by means of Qand
Q. Each g-periodic orbit of Q or Q is characterized by
its winding number p/q when f9(¢)=¢ +2mp (f=Q
or Q). It is easy to show that every 2g-periodic orbit
P/2q of Qis a g-periodic asymmetric orbit (p — q)/q of
Q. Analogously, every (2q +1)-periodic  orbit
p/(2g +1) of Qis a (2¢ + 1)-periodic symmetric orbit
(2p—2g—1)/(2g+1). On the other hand, the chain
rule guarantees that the stability of both orbits (those
corresponding to Q and Q) is the same. Thus, the
phase-locking spectrum in the (T, Vg) parameter
space of the oscillator, when it is forced by alternating
pulses, can be related to the analogous one of the os-
cillator forced by pulses of constant sign. The
correspondence can be realized in the following way:
Take the phase-locking diagram for the second case,
shift the T axis by an amount % T, and expand it by a
factor of 2, and, finally, divide the even periodicities
by 2.

As an example, we have plotted [Fig. 1(a)] the sta-
bility regions in the (7, Vg) plane of the periodic
solutions of the previously studied model® 1°

X4 (4bx2—2a)x + b*x3 — 2abx> + (w3 + a®) x

— v, 20(—1)’”6(t—nTE/2’), (5)

where a and b are parameters and r =0, for compar-
ison [Fig. 1(b)] with the regions in the same plane ob-
tained for r=1 (alternating pulses). In the last case,

the system has the required symmetry. The above-
mentioned correspondence clearly appears in Figs.
1(a) and 1(b) for long values of T;. However, for
Ty < Ty/2 it is broken. This is because, for such
values of the external frequency, the strong-relaxation
approximation is not justified any more. In this re-
gime, the map Pis two dimensional and essentially dif-
ferent from the stroboscopic map of the system with
r=0. The system shows, for these values of 7, an
interesting behavior of bifurcations. It is often report-
ed in the literature that symmetric solutions do not bi-
furcate to period-doubling ones without a previous
symmetry breaking. This behavior has recently’ been
well understood for “‘purely’’ dissipative forced oscil-
lations and for generic one-parameter families of
dynamical systems which can be described with two-
dimensional maps, both having the symmetry of (1).
However, our model, as well as all externally driven
self-oscillators, does not belong to such a class.!! In
fact, there is a curve in the parameter space (see Fig.
1) at which period doubling from a symmetric solution
takes place.!? In Fig. 1(c) we have plotted the sym-
metric orbit near the bifurcation point and the period-
doubled orbit after the bifurcation. The new orbit is
asymmetric, which reflects the simultaneous oc-
currence of a symmetry-breaking bifurcation. At the
end of the subsequent cascade of period-doubling bi-
furcations, strange attractors appear. In Figs.
1(c)-1(f) we show three magnifications of one of
these attractors stroboscopically sampled. Its compli-
cated structure is similar to those arising in two-

FIG. 1. Phase-locking diagrams in the plane ( Tk, V) of the system (5) for a =1.57079, b=15.7079, and wo=1.57079; (a)
r=0, and (b) r=1. In the last case, period doubling from symmetric orbits and symmetry-breaking bifurcations are illustrat-
ed. Circled numbers in (a) and (b) and letters in (b) label the period and the symmetry of the corresponding region. (d)-(f)
Successive enlargements of the strange attractor shown in (c) for Tp=1.628 and Vy=1.695; panel (c) is the set
(0.07,0.53) ® (—2.15,0) and each of panels (d)—(f) is drawn in the preceding one.
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dimensional iterated maps.!?> This is another evidence
for the failure of the one-dimensional description at
these values of the parameters.

In the remaining part of this paper we establish a
rule which allows us to know whether a given periodic
orbit of a symmetric system is symmetric or asym-
metric by knowing its rotation number. We claim that
this rule is universal.

It is well known that several qualitative features of
the phase-locking structure of driven nonlinear oscilla-
tors can be universally described with the aid of the
so-called Farey sum.!*1> Moreover, in a beautiful re-
cent work by Feigenbaum,!® universal quantitative
predictions on the phase-locking structure have been
obtained in a way which is also related to the Farey
sum. Here we put the symmetry of the orbits in the
same frame.

Let @ denote the Farey sum operation between
two rational numbers. Thus, if ri=p;/q; and
rp=py/q, are two such numbers, then r @ r,
= (p1+py)/ (g, + q,). This operation has the follow-
ing properties: if r;=pi/q, and r,= p,/q, satisfy the
unimodularity  condition  |p;g,— pag;l=1 then
r3y=r; @ r, satisfies the same condition with both rq
and r,. Unimodular numbers are also said to be ‘‘adja-
cent’” and their Farey sum is called ‘“‘mediant.”” All
the rational numbers between 0 and 1 (and so all the
phase-locking regions) can be organized in the so-
called Farey tree. Starting with the numbers 0/1 and
1/1 we define the zeroth level of the tree as
1/2=0/1 & 1/1. The first level is obtained by Farey
addition of all the previous numbers: 1/3=0/1 & 1/2
and 2/3=1/2 @ 1/1. This construction continues re-
cursively. At the nth stage, the nth level of the tree
which contains 2” members is obtained [see Fig. 2(a)].
Our main result here is the following: A given orbit is
characterized by a rational winding number which is
obtained by the Farey sum from two parents. If the
two corresponding orbits are asymmetric, then the
resulting one is symmetric; if only one parent is sym-
metric, then the orbit is asymmetric. That is all, be-

0 1A .S
1 \\\\\‘1 —;;,:”1 T~ A/;=,—,
1s )

l/ \g S/ \A
122 323 g4 §7a
%2 373 a5 504\, e SN AN

1/\2 3/1\3 4/\b 514
5 7877 875 S AASAASA
(a) (b)

FIG. 2. (a) The first four levels of the Farey tree; the
lines join ‘‘parents’ with their respective ‘‘sons’’; the path
indicated by double lines passes through the successive ap-
proximants of the golden mean. (b) Symmetry labels of the
orbits whose rotation number is the corresponding rational
number in (a).

cause two symmetric parents cannot exist (they cannot
be adjacent). The proof of this statement is not diffi-
cult and the details will be given elsewhere.

Figure 2(b) shows what the structure of the Farey
tree looks like when the symmetry of the solution is
considered. Symmetric orbits are labeled S and the
asymmetric ones A. Observe that at each level of the
tree the labels are arranged in sequences of groups
AAS. Moreover, for a given level, say n, we have the
following: (a) If 2%/3=p+ +, where p is an integer,
then the sequence of characters is

(AAS ... pgroups ... AAS)A. 6)
(b) If 27/3=p+ %, then the sequence is
S(AAS ... pgroups ... AAS)A. @

For the complete arrangement of labels at a given
stage (say the nth) of the construction of the Farey
tree, we found that (a) when 37.,27/3=p the se-
quence is S(44S ... p—1 groups ... AAS)AA; and
(b) when 31_¢27/3=p++ it is AS(44S ... p—1
groups . . . AAS)AA.

At this point we want to make the following re-
marks: (i) The sequences (6) and (7) coincide with
the sequence of characters associated with the orbits
whose winding numbers correspond to the successive
approximants of the golden mean (3,%,2,5, ...) as
can be seen in Fig. 2. This fact is consistent with
Feingenbaum’s result,!® which shows that this number
plays a role in the universal description of the phase-
locking structure for highly iterated orbits. (ii) We can
recognize the symmetry of an orbit from its winding
number: If the sum of numerator and denominator is
even the orbit is symmetric, otherwise it is asym-
metric. (iii) It is known!* that the phase-locking re-
gions can, in general, be ordered according to their
size by taking into account that the greatest of the re-
gions localized between two adjacent ones is just the
region whose winding number is the mediant. The
two parents are greater than the daughter. Even
though this rule works in typical forced oscillators, we
have seen that the symmetry drastically modifies this
behavior. In this case, a similar scheme can be con-
structed by replacing the unimodularity condition in
the definition of adjacency by the following:
|p1a2— paail =2.

Finally, we want to point out that our results can be
rigorously proved for the strong-relaxation regime.
However, our experience with the model (5) indicates
that they extend to the case at which this approxima-
tion fails. It is also interesting to note that, when vary-
ing Vg, the map Q (and Q) becomes noninvertible,
and the phase-locking regions which persist have the
same symmetry as in the invertible case. The route to
chaos starts now always with a symmetry-breaking bi-
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furcation when the original orbit is symmetric.!2
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