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A generic phase diagram is proposed for stepped (1 lm) surfaces of fcc metals, which describes
the roughening transition and subsequent changes of the nature of the rough phase in terms of a

sequence of universal values for the roughness parameter x~(T, m). From a detailed analysis of
atom-beam diffraction profiles of Ni(115), for 100 K & T & 900 K, it is concluded that Ni(115) is

rough in this temperature interval. The roughening temperatures of Ni(113) and Ni(001) are
predicted to be 200+ 50 K and well above 420 K, respectively. Near 420 K, islands appear in the
rough (115) surfaces in addition to the meandering steps.

PACS numbers: 68.20.+ t, 64.60.Fr, 68.40.+e, 82.65.Dp

Extensive studies in recent years have shown that sur-
face defects can have an appreciable effect on a wide
range of structural and electronic properties of surfaces
and interfaces as well as on the chemical reactivity of sur-
faces. Here we report the first evidence for the roughen-
ing' of stepped (1 1 m) metal surfaces, which is obtained
from the detailed analysis of atom-beam diffraction
(ABD) line shapes. Specifically, we propose a generic
phase diagram for (1 lm) surfaces and, by combining this
with our experimental results for Ni(115), we conclude
the following: (i) The Ni(115) surface is rough in the ex-
perimentally studied temperature interval 100 K & T
& 900 K; the roughening temperature of Ni(115) is

Ttt & 50 K. (ii) Ni(113) is predicted to roughen at
TR ——200+50 K, and all other Ni(llm) faces (m & 1) at
lower temperatures. (iii) The roughening temperature of
Ni(001) is well above 420 K. (iv) Dips in the diffraction
intensity observed for Ni(115) and Cu(llm) surfaces '

near 420 K reflect island formation as characteristic of
the roughening of the (001) surfaces.

Figures 1(a)—l(c) show typical configurations of
stepped (1 1 m) surfaces for three temperature regimes. In
the ordered phase, Fig. 1(a), the steps are equally spaced
and do not meander. The two basic fluctuations are the
meandering of the steps, Fig. 1(b), and the formation of
stacked or nested islands, Fig. 1(c). The ordered phase is
stable only if the range of the interactions is such that
steps repel each other. In that case Fig. 1(a) characterizes
the surface until the roughening transition at nonzero
Ttt(1 1m). At Ttt(1lm) the entropy gained by meander-
ing of the steps becomes larger than the energy lost by
placing the steps closer to each other. The roughening
transition is a Kosterlitz-Thouless (KT) transition.
Above TIt (1 1 m), see Fig. 1(b), the degree of roughness in-
creases with temperature and is characterized by the
roughness parameter x~(T,m) to be defined below. The
steps have a fractal structure (like coastlines), which is

geometrically characterized by a set of fractal dimensions;
i.e., the correlation length is infinite and the correlation
functions decay as inverse powers with critical exponents
determined by those fractal dimensions.

Although no more phase transitions take place for
T& Ttt(1 1m), the temperature behavior of xt(T, m) re-
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FIG. 1. Configurations of stepped (llm) surfaces with

increasing temperature. (a) Ordered phase. (b) Rough
phase with meandering steps. (c) Rough phase above
TR (001) with nested islands.
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fleets roughening transitions in other (llm) faces. For
example, the roughening of the (113) face at
Tz(113)&T~(115) shows up in the roughness of the
(115) face as the characteristic temperature below which
the steps, although meandering, do not approach each
other by distances less than the (113) terrace width. The
roughening of the flat (001) face takes place at an even
higher temperature. At T~(001) the meander entropy be-
comes large enough that the free energy needed to create
steps vanishes. Islands are formed. These islands are
nested and have boundaries that, like the meandering
steps, have a fractal structure. The roughening of the
(001) face is reflected in the roughness of the (1 1 m) face
as the characteristic temperature where, in addition to
meandering steps, islands appear on the (001) terraces.
Here the character of the rough phase changes from that
of Fig. 1(b) to that of Fig. 1(c).

Our task is to determine how the experimental tem-
perature interval fits into this generic sequence of charac-
teristic surface configurations. First we show that the
roughness parameter xi(T, m) assumes specific universal
values at the roughening temperature and the other
characteristic temperatures. Next we describe how
xi(T, m) can be extracted from ABD line shapes. Finally
we discuss our results for Ni(115).

The theory of roughening transitions is well known. '

Our generalization to stepped (1 1 m) surfaces has strong
similarities with the theory of commensurate-
incommensurate phase transitions (where domain walls
play the role of the steps) and with the theory of crystal

shapes.
As usual, we describe the surface by a solid-on-solid

(SOS) model. The surface is characterized by the heights
of columns of atoms by assigning height variables h, to
the sites r =(x,y) of a two-dimensional lattice. Since the
(001) faces of Ni and Cu are body centered, they are
described by the body-centered solid-on-solid (BCSOS)
model, with "integer lattice sites" (n„,n~) and "half-
integer sites" ( n„+ ~, nz + ~ ), in units of the nearest-
neighbor distance ao, the x and y axes are along the [110]
and [110]directions. The height variable h„, in units of
ao/V2, takes integer values at the integer sites and half-
integer values at the half-integer sites. The heights of
nearest-neighbor columns are restricted to differ by a half
integer. The forces between the particles are represented
by an interaction V(h„h„;r —r') b—etween columns.

First consider the (001) surface. In the rough phase,
there is no limit to the height fluctuations; the height-
height correlation function diverges logarithmically. For
R ))1,

((h„—ho —x/m) ) =(xi/vr )ln(R),

with R =(x/N~) +(y/2), where m = oo and N =2
for the (001) face. xi ——x i ( T,m) is the roughness parame-
ter mentioned above. As a result of the long-wavelength
fluctuations the discreteness of the steps is irrelevant; the
rough phase is described by the Gaussian model. ' To
determine the universal values of the roughness parameter
at Tz(1 1m) for different m, consider the following ver-
sion of the sine-Gordon model:

N2Z= g exp g V(P„P„;r r') +g—z 'ex—p[2mi(P, +x)N, ] .
r, r' r N„

(2)

The P, are continuous variables, subject to the weight function exp(2iriP„N„) with N„=O, +1,+2, . . . , which favors in-
teger values of P„at integer sites and half-integer values at half-integer sites. The significance of the fugacity parameter
z is that it allows us to identify the sine-Gordon operator that drives the roughening transition. At z =1 the model be-
comes the BCSOS model, at z =0 the Gaussian model, and for small z a sine-Gordon model. Above the roughening
transition the BCSOS model flows under renormalization towards the Gaussian model, such that xi vr/KG, with K——o
the fixed-point value of the Gaussian coupling constant. In the rough phase and in the scaling region around the
roughening transition the BCSOS model belongs to the same universality class as the sine-Gordon model,

Z = g exp g KG(P„—P„) +g +2zzcos[2vrN(gz+x+x/m)]
(r, r')

with N =0, 1,2, . . . , nearest-neighbor summation (r, r'), and m = oo for the (001) crystal face. The roughening transi-
tion of the BCSOS model is driven by the cos(4vrg) operator, rather than cos(2vrg). On a technical level, this is due to
the modulation in the cos(2m/) operator, which implies that this operator is irrelevant. On a more intuitive level, this is
due to the doubling of the unit cell in the BCSOS model with respect to the conventional SOS model. ' As a rule of
thumb, the roughening transition is driven by the sine-Gordon operator with the lowest wave number N in Eq. (2) that is
not modulated at any of the lattice sites.

Crucial for our discussion is the result that Ko and therefore the roughness parameter x, take a universal value at
T~(001). In our notation xI = —,. At TR(001) the cos(4ng) operator becomes marginal, i.e., its critical dimension is
xN ——x&X =2 with N =2. '
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FIG. 2. Generic phase diagram for (11m) metal surface.
The solid lines represent ordered phases. Along the dashed
lines the roughness xt(T, m) is constant. The dotted line
represents the experimental path for Ni(115).

Stepped (1 1 m) surfaces, Fig. 1(a), are described by our
imposing a finite step density in the BCSOS model,

PI. ~
——$0 ~ +L lm and P r + t& 2~ P——t ~2,~ +L /m, with L

the length of the surface in the x direction (such that
L/m is an integer). Periodic boundary conditions are re-
stored in Eq. (2) by the introduction of new variables
P„=P„—x/m. This redirects the column direction to the
new surface normal. As before, the BCSOS model be-
longs to the same universality class as the sine-Gordon
model, but now with different phase factors m & ac in
Eq. (3). The roughening of the (11m ) face is driven by a
sine-Gordon operator with a different wave number, N
bemuse of the different periodicity of the ordered phase.
According to our rule of thumb, X is equal to the
smallest integer satisfying the equation X (m '+ 1)
=2(mod2). Hence, X =m when m is odd and X =2m
when m is even. Since at the roughening transitions
x& ——x&%~=2, it follows that x& takes the universal
values x't '=2/X at Tz(llm). For example, at the
roughening temperature of the (115) face, xIR) = 225, and
at T~(113), x t

'= —,; both values are much smaller than

xI ' ———,
' at Tz(001). In SOS models where the step

height is not restricted, the roughness continues to in-
crease with temperature. In the BCSOS model, where
only steps of height + —,

' are allowed, x& has an upper
bound, x) =

2 .
We can now draw a generic (T, 1/m) phase diagram

for (1 1m) metal surfaces; see Fig. 2. The solid lines
represent ordered low-temperature phases, Fig. 1(a).
Everywhere else the surface is rough and characterized by
x i ( T, m ). Lines of constant x i can be drawn schematical-

G (&) g g "Qe2nigx jm
Q

= o (4)

with x~ ——x i k, where k =Q(mod 2) in the interval
—1&k &1, and with R =(x/N ) +(y/2) .

For Ni(115) we find power-law behavior at all tempera-
tures 100 K & T &900 K and obtain x& from power-law
fits using log-log plots. Such plots yield the value of x&
inside a window bounded at small q as a result of the in-
strument width and finite domain size, and at large q as a
result of the overlap between diffraction peaks. Both this
window and the diffraction sensitivity become optimal at
the anti-Bragg angles. We checked that at the anti-Bragg
angles Q = 1,3,5, the values for x~ are consistent for in-
cident beams perpendicular and parallel to the steps. To
minimize inelastic effects (Debye-Wailer), the value of xi
was determined from data at the anti-Bragg angle Q =3.
Although asymptotically xt2, as defined below Eq. (4),
has cusps at the anti-Bragg angles, it rounds off as a resu-
lt of finite-size effects such that x~ becoines insensitive to
Q and x~ ——x i near Q = 1(mod 2).

Figure 3 shows xi for Ni(115) as a function of tem-
perature. x

&
is roughly linear in the interval

ly." x ~ assumes the universal values x '& ', when
T = T~(1 1m), and xi ——x't '/2, when the ordered phases
(solid lines) are approached as a function of m at fixed
T&Tz(1 1m). The latter follows from the theory of
commensurate-incommensurate transitions. The other
features of the lines of constant xt are not universal.
xi(T,m) behaves very nonanalytically in the limit of zero
temperature if the range of the step-step interaction is
sufficiently long so that many ordered phases are stable
(including those with two or more alternating step-step
distances). This would lead to a so-called devil's staircase
in the phase diagram at T =0. ' At higher temperatures
x i ( T, m ) smoothens out. The line x t

———,
'

gives the
characteristic temperature where islands appear in the
rough (1 1 m) surfaces.

ABD experiments measure the scattering function
S(q, Q), which is the Fourier transform of the correlation
functions G&(r)=(exp[2mig(h„—hp)]). ' ' Here

q =(q„,qz) denotes the component of the momentum
transfer parallel to the surface and Q the component per-
pendicular to the surface. Along the diffraction rods the
peak width exhibits maxima and minima as a function of
Q as a result of interference between steps. ' S(q, g) is
periodic in Q, with period 2. Q =0(mod 2) defines the
Bragg angles where the peak width is minimal, and

Q =1(mod 2), the anti-Bragg angles where the peak
width is maximal. ABD is insensitive to the corrugation
of the (001) plane, and therefore no periodicity of S(q, g)
in q~ is seen and the observed spacing of the diffraction
rods in q„ is 2 times larger.

The line shapes indicate directly whether the surface is
ordered or rough. The correlations decay exponentially in
the ordered phase and as an inverse power in the rough
phase. In the rough phase, for R )&1,
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with m =3,5,7. ' The diffraction intensity for Ni(115)
drops near T =420 K. We know from our line-shape
analysis that this drop in intensity reflects the (001)
roughening. Similar drops have been observed with ABD
for Cu(llm) surfaces, all at comparable temperatures
T=420—500 K. Assuming similar energetics for Cu
and Ni, we interpret these results to reflect the roughen-
ing of the Cu(001) surface as well. This conclusion con-
tradicts a recent suggestion (based on studies of intensity
only) by Villain, Grempel, and Lapujoulade that these
drops in intensity are associated with the roughening of
the (1 lm) surface itself. The step energy is considerably
smaller than that assumed by them.

This work was supported in part by the National Sci-
ence Foundation under Grants No. DMR 83-19301 and
No. CHE 81-09067.

FIG. 3. Roughness parameter xi vs temperature for
Ni(115) from line-shape analysis of the specular peak close
to anti-Bragg angles 0 for scattering parallel and perpendicu-
lar to the direction of the steps.

100 K & T ~ 900 K, and larger than x i
' ———„.Therefore,

Ni(115) is above its roughening temperature. We estimate
that Ttt (115) is less than 50 K. The value x I

' = —', , indi-

cating the roughening of Ni(113), is at the lower end of
the temperature interval; we predict that Ttt(113) is ap-
proximately 200+50 K. The value xi ' ———,', indicating
the roughening of Ni(001), occurs at T =420+50 K.
Here the topology of the surface changes from that of
Fig. 1(b) to that of Fig. 1(c). Because of the cusp at
1/m =0 in the x t ———, line in Fig. 2," the roughening of
Ni(001) takes place at higher temperature. Since the
height of the cusp is unknown, we can infer only that
Tttiootl) 420 K. A value of Ttt(001)=700 K would im-

ply that the energy required to create a step in the (001)
face is of the order of 500 K per unit length ao." Direct
measurements of Ttt (113)and Ttt(001) are under way.

Finally, we comment on recent work on Cu(1 1 m) faces,

For a review, see J. D. Weeks, in Ordering of'Strongly
Fluctuating Condensed Matter Systems, edited by T. Riste
(Plenum, New York, 1980), p. 293.

J. Villain, D. R. Gremple, and J. Lapujoulade, J. Phys. F
15, 809 (1985).

J. Lapujoulade, J. Perreau, and A. Kara, Surf. Sci. 129,
59 (1983).

4E. H. Conrad, R. M. Aten, D. S. Kaufman, L. R. Allen,
T. Engel, M. den Nijs, and E. K. Riedel, to be published.

~V. L. Pokrovsky and A. L. Talapov, Phys. Rev. Lett. 42,
65 (1979); see also J. Villain and M. B. Gordon, Surf. Sci.
125, 1 (1981).

C. Rottman, M. Wortis, J. C. Heyraud, and J. J. Metois,
Phys. Rev. Lett. 52, 1009 (1984).

7H. van Beijeren, Phys. Rev. Lett. 38, 993 (1977).
SL. P. Kadanoff, Ann. Phys. (N.Y.) 120, 39 (1979).
9H. J. F. Knops, Ann. Phys. (N.Y.) 128, 448 (1980).

toM. den Nijs, Phys. Rev. B (to be published).
See also F. D. M. Haldane, Phys. Rev. Lett. 45, 1358

(1980).
t2Compare, e.g. , P. Bak, Rep. Prog. Phys. 45, 587 (1982).
t3G. Blatter, Surf. Sci. 145, 419 (1984).
t4M. Henzler, in Electron Spectroscopy for Surface Analysis,

edited by H. Ibach (Springer, Berlin, 1979), p. 117.

1692


