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Accurate Density Functional for the Energy: Real-Space Cutoff
of the Gradient Expansion for the Exchange Hole
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The density-gradient expansion of the fermion exchange hole is analyzed in real space. Unlike
the local-density approximation, the second-order gradient-expansion approximation is found to
violate two important properties of the exact hole: The exact hole is negative everywhere, and
represents a deficit of one electron. Imposition of these exact constraints leads to an accurate new
density functional for the exchange energy. Residual errors in the exchange energy for atoms are
about 1% of this quantity. The new functional approximation may be generalized to include corre-
lation.

PACS numbers: 31.10.+z, 71.10.+x, 71.45.Gm

Kohn-Sham density-functional theory is the foundation of many modern electronic structure calculations, especially
those for solids. In principle, the exact ground-state energy E and electron density n(r) may be found from a self-
consistent-field calculation in which U~(r)=5E„, /6n(r) plays the role of the exchange-correlation potential. The
exchange-correlation energy has a gradient expansion

E [n]= f d rA„, (n)n + f d rC„,(n)~ V'n
~

In (1)

which is asymptotically valid for densities that vary slow-

ly over space. The local-density approximation (LDA),
which retains only the leading term in Eq. (1), often per-
mits useful predictions of electron densities, binding and
bonding energies, atomic positions, and vibration frequen-
cies, etc. However, the LDA also makes some disturbing
errors: Total energies for atoms are much less realistic
than those of the Hartree-Fock approximation. Transfer
energies between s and p, or between s and d, orbitals are
often poorly described. Dissociation energies are usually
accurate for s-bonded molecules, but are as much as 0.09
hartree too large in sp-bonded molecules like 02. Re-
cently, Jones and Gunnarsson have identified errors in
the LDA exchange energy as the major source of these
discrepancies. Although a number of improvements upon
LDA have been suggested, ' the goal of chemical ac-
curacy has remained elusive.

For realistic electron densities, the second-order
gradient-expansion approximation (GEA), which retains
the first two terms of Eq. (1), is something of a disaster.
The grossest errors of this approximation arise from the
gradient contribution to the correlation energy, and may
be purged by the method of wave-vector analysis. '

Indeed, with the advent of the Langreth-Mehl approxima-
tion for correlation, it is still the exchange energy which
is the largest remaining source of error in the density-
functional theory. This Letter presents a real space-
analysis of the gradient expansion for the exchange ener-

gy, and a new density-functional approximation for ex-
change based upon this analysis. The new scheme is
readily generalized to include correlation.

The "exchange energy" is, of course, a Fock integral
constructed either from Hartree-Fock orbitals [belonging
to a nonlocal effective potential V(r, r')] or from Kohn-

Sham orbitals [belonging to a local V(r)]. Although the
numerical difference is often small, the conceptual differ-
ence is important. Since the Hartree-Fock exchange ener-

gy has no density-gradient expansion, ' it is the Kohn-
Sham exchange energy which will be discussed here.

The exact exchange energy as a functional of the densi-

ty is defined in the following way': Given the density
n (r), find that effective potential V(r) which generates it
via the equations [——,

' V' +V(r)]&&g;(r)=et/;(r) and
n(r) = g;8(p —e;)

~
g;(r)

~

. [The step function g(x)
equals 1 for x) 0, and 0 for x &0.] The Kohn-Sham or
noninteracting density matrix is

p(r, r+R) = g. 8(p —e;)g,'(r+R)g;(r) . (2)

The hole satisfies the conditions

n„(r,r) = n(r)/2—,

n„(r,r+R) (0,
f d R n„(r,r+R) = —1 .

The exchange energy is

E„[n]=f d re„([n];r),
where

(4)

(5)

(6)

e„([n];r)= , n(r) f d R n„(r,r+R) jR—
is the exchange-energy density.

The density-gradient expansion for the exchange energy

The density at point r+R of the exchange hole about an
electron at point r is

n„(r,r+R)= ——,
'

~p(r, r+R)
~

In(r) .
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was proposed on dimensional grounds by Herman, Orten-
burger, and Van Dyke, ' and the first a priori calculation
of the coefficient C„ in Eq. (1) was made by Sham. '

Gross and I3reizler' have derived the second-order ex-
pansion from the Kirzhnits operator-algebra formalism.
Equations (18) and (19) of Gross and Dreizler may be
combined to yield the gradient expansion of the density
matrix. The gradient expansion (GEA) of the exchange
hole then follows from Eq. (3):

He
Ne
Ar
Kr
Xe

LDA

—0.884
—11.03
—27.86
—88.6

—170.6

CxEA

—0.970
—11.55
—28.86
—90.7

—173.9

Eq. (14)

—1.033
—12.24
—30.36
—94.5

—180.S

Exact

—1.026
—12.11
—30.18
—93.9

—179.1

TABLE I. Exchange energies E„(in hartrees) of atoms with
nonrelativistic Hartree-Fock densities.

n„(r,r+R) = —,' n —(r)y(r,R),

y =J+Lkp R.Vkp+(z J—4zL)kp (V'kp) /192 +~kp (R V'kp) zJk—p V kp48+zLkp (R V) kp/6,

(9)

(10)

where R=R/8, k p
——[3&n ( r ) ]'i, and

J=74(4—4cosz —4zsinz+z +z cosz)/z

L =9(2—2cosz —zsinz)/z

M =9(sinz —zcosz) /16z,

(12)

(13)

n„(r,r+R)= —
2 n(r) 0y( )ye(R, (r) —R) . (14)

The first step function in Eq. (14) forces the satisfaction
of Eq. (5), while the second involves a cutoff radius R, (r)
which is chosen to satisfy Eq. (6). The angular integra-
tions over the direction R in Eqs. (6) and (8) are per-
formed analytically, leaving only the radial integrations

with z =2kpR. Equation (9) is new, although it follows
rather directly from the equations of Ref. 14. At large R
the gradient terms in Eq. (9) display undamped oscilla-
tions proportional to cos(2kpR), so that the integrals in

Eqs. (6) and (8) are undefined. Nevertheless, partial in-

tegration over r yields' the exchange energy in the form
of Eq. (1), with A„(n) =0.738 56 and C„(n)= —0.001 667
a.u., the a priori values of Sham. '

It should be mentioned here that these results are ob-
tained by replacing the Coulomb interaction I/R in Eq.
(8) by the screened interaction exp( —aR)/R, and then
taking the limit a~O at the end of the calculation. This
procedure can be justified for any finite system: When
a ' is much bigger than the size of the system, there
can be no significant difference between 1/R and
exp( —aR)/R. (Kleinman, ' who worked with a I/R in-
teraction in an infinite system, derived a gradient coeffi-
cient C„which is —, of Sham s coefficient, and attributed
the difference to a peculiarity of the a~O limit. )

The LDA exchange hole [which retains only the first
term on the right-hand side of Eq. (10)] obeys the exact
conditions of Eqs. (4)—(6). Gunnarsson and Lundqvist'
have emphasized that satisfaction of Eq. (6) is a major
reason for the success of LDA outside its domain of for-
mal validity, while Connolly' and Harris' have made
similar claims for Eq. (4). The comparable importance of
Eq. (5) is asserted here. Now the GEA of Eq. (9) obeys
Eq. (4) but not Eqs. (5) and (6). This observation suggests
the following extension of the GEA:

over R to be performed numerically. For slowly varying
densities, the new approximation of Eq. (14) properly
reduces to the GEA of Eq. (9). Significantly, it is found
that the truncated exchange hole in an atom always en-

compasses the nucleus.
Table I displays the exchange energies of atoms with

analytic Hartree-Fock densities. ' The "exact" exchange
energy was constructed by subtraction of the classical
electrostatic energy from the Hartree-Fock potential ener-

gy. ' In principle, this procedure is not quite correct be-
cause the orbitals being employed in Eq. (2) are Hartree-
Fock and not Kohn-Sham orbitals; in practice, the nu-
merical difference is almost negligible, as evidenced by
comparison with the exact Kohn-Sham exchange energies
in Table II of Ref. 11.

Table I shows that the I DA underestimates the magni-
tude of the exchange energy by about 10%%uo, and the GEA
corrects only about one third to one half of this error.
However, the new density-functional approximation of
Eq. (14) corrects essentially all of the LDA error in
atoms. Remaining errors in the exchange energy are
about 1% (i.e., about one third of the correlation energy ).
Numerical studies also show that, without the factor 9(y)
in Eq. (14), no improvement over GEA would be ob-
tained. Table II compares various nonlocal density func-
tionals for the exchange energy of the neon atom, and in-
dicates the improved accuracy of the presence approxima-
tion.

One of the original motivations for this work came
from Table II of Ref. 11. That table showed that, while
the local-density approximation makes comparable per-
cent errors for the exchange energy E„and the nonin-
teracting kinetic energy T, in atoms, the gradient-
expansion approximation makes 5% errors in E„and
only 1% errors in T, . It is therefore gratifying that, with
the imposition of the constraints of Eqs. (S) and (6) upon
the gradient-expansion approximation, 1% errors are ob-
tained for both E„and T, . [The kinetic energy density,
defined as —

2 VRp(r, r+R) evaluated at R=O, is unaf-

fected by the real-space cutoff procedure. ]
Table III shows the exchange-energy contribution,

SE„=E (ion) —E„(atom), to the valence-shell removal
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TABLE II. Exchange energy E„(in hartrees) of the neon
atom from approximate nonlocal functionals.

LDA
GEA
Average density'
Average density shell'
Weighted density'
Weighted density shell'
Self-interaction correction
Langreth-Mehl (f=0.15)'
Eq. (14)
Exact

'Reference 3.
Reference 2.

'Reference 7.

—11.03
—11~ S5
—12.54
—12.28
—12.80
—12.44
—12.41
—11.76
—12.24
—12.11

energies of several atoms. Again, analytic Hartree-Fock
densities' have been employed. The most remarkable
thing about Table III is the good accuracy of all three
density-functional approximations for the valence-shell
removal energies in the exchange-only treatment.

More challenging and chemically relevant tests of the
new functional approximation, such as the sp and sd
transfer energies in atoms and the dissociation energies in
molecules, will require calculations for non-spherical den-
sities. Recently, however, Jones and Gunnarsson have

I

suggested that calculations with accurate density func-

TABLE III. Exchange-energy contribution AE„(in hartrees)
to the valence-shell removal energies of atoms.

Atom Shell LDA CiEA Eq. (14) Exact

Be
Ne
Zn

(2s)
(2p)'

(3d)' (4s)

0.356
4.40

11.2

0.353
4.40

11.1

0.413
4.55

11.4

0.390
4.S1

11.3

n, (r, r+ R) ) n(r+—R) .

The natural extension of Eq. (14) to satisfy Eq. (16) is

(16)

tionals and spherically averaged densities should ade-
quately describe the sd transfer energies in atoms. Table
IV shows the exchange-energy contribution to the sd en-

ergy in the scandium atom, and indicates that Eq. (14)
corrects most of the error of the local-density approxima-
tion for this quantity.

If a spin-density-functional approximation to the ex-
change energy is desired, it can be found from the exact
relationship

E [n „n,]= —,
' E„[2n,]+ ,

' E„[2n—,] .

The spin-density-functional version of Eq. (14) was in
fact used in Table IV. If accuracy greater than that of
Eq. (14) is desired, it may perhaps be found by imposing
the exact constraint

n„(r,r+R) = [—,' n (r)y—8(y)Q(n (r+R) —,
'

n (r)y—) n(r+R—)0( ,' n (r)y —n(r+R))]—8(R, (r) —R) . (17)

The alternative new functional approximation of Eq. (17)
satisfies the same theoretical constraints as the weighted-
density approximation, and additionally reduces to the
gradient expansion in the slowly varying limit. Equation
(17) should be no harder to implement than the weighted
approximation.

It remains to test the new functional approximations of
Eqs. (14) and (17) for a wide range of systems, to con-
struct the functional derivatives M„/5n(r) for use in
self-consistent calculations, and to include correlation. In
physical systems, the neglected correlation energy is of
course important, especially for the description of bond-
ing in molecules and cohesion in solids. Equation (14) for
the exchange energy may be teamed with the Langreth-

Mehl approximation for the correlation energy. (The
Langreth-Mehl approximation has been tested for both
atoms and molecules; the spin-density-functional ver-
sion is now available. ') Table V shows exchange-
correlation energies for several atoms calculated in this
way.

The approximations of Eqs. (14) and (17) may also be
generalized directly to include correlation, since the exact
exchange-correlation hole n„,(r, r+R) also obeys Eqs. (6)
and (16). The real-space cutoff procedure for exchange
and correlation may be more accurate than that for ex-
change alone, since correlation digs a deeper, more com-
pact hole around each electron. [This is the reason why

TABLE IV. Exchange-energy contribution AE„(in hartrees)
to the sd transfer energy in the scandium atom. The quantity
shown is

E„[(4st)(4s 1)(3d t)]—E„[(4st)(31t)'] .

TABLE V. Exchange-correlation energies E„, (in hartrees)
of atoms with nonrelativistic Hartree-Fock densities. Present:
Eq. (14) for exchange plus Langreth-Mehl approximation
(f=0.15) for correlation.

Atom

Sc

LDA

0.191 0.199

Eq. (14)

0.167

Exact

0.160

The approximations have been made spin dependent via Eq.
(15). The inputs have been taken to be spherically averaged
Hartree-Fock spin densities n, (r) and n, (r).

He
Ne
Ar

LDA'

—0.994
—11.74
—29.27

'Correlation energies from Ref. 2.
Correlation energies from Ref. 7.

Present"

—1.086
—12.65
—31.16

Exact'

—1.066
—12.49
—30.91
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the LDA is a better approximation for exchange-
correlation (Table V) than it is for exchange alone (Table
I).] All that is lacking at present is the gradient expan-
sion for the correlation hole, i.e., the analog of Eq. (9). In
fact, the real-space cutoff of the gradient expansion for
the correlation hole at large 8 is very much like the
Langreth-Perdew-Mehl wave-vector cutoff of the gradient
expansion for the correlation energy at small k. ' This
wave-vector —cutoff procedure does not greatly improve
the exchange energy, however, because the anomalous
large-R behavior of the GEA energy hole is associated
not with the k~0 limit but with distributional singulari-
ties at k =2kF in the wave-vector analysis of the GEA
exchange energy.

In summary, the error in the density-gradient expan-
sion for the exchange energy E„[n] has been explained
and substantially expunged. The prospect of density-
functional calculations with chemical accuracy no longer
seems so remote.

The author thanks David Langreth, who taught him
how to make things right by patiently analyzing and
correcting the things that are wrong. Thanks for helpful
comments to David Langreth, Mel Levy, Mark Rasolt,
and george Rosensteel. This work was supported in part
by the National Science Foundation under Grant No.
DMR 84-20964.
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