Concentration Scaling for Spin-Glasses with Multiple Magnetic Impurities

Recently, Vier and Schultz¹ presented a study of the concentration dependence of the freezing temperature T_g in metallic spin-glasses with multiple impurities. For two magnetic impurity species in Au, their data could be described by

$$
T_g(C_1, C_2, \rho) = T_g(C_1, 0, \rho) + T_g(0, C_2, \rho), \quad (1)
$$

where C_{α} is the concentration of species α and ρ is the resistivity, which they relate to the damping of the Ruderman-Kittel-Kasuya- Yosida (RKKY) exchange interaction by mean free path effects. Equation (1) is a generalization of the well-known concentration scaling law² for a single species, $T_g(C_\alpha) \propto C_\alpha$.

In this Comment, I note that (1) is the exact result of a simple mean-field³ calculation, with properly formu*lated cutoffs,* for *undamped* RKKY interaction ($\rho \rightarrow 0$). neglect "replica symmetry breaking"; in the infinite-range model⁴ this is exact for $T \geq T_g$ and always gives the correct T_g .

In the dilute limit, the system is modeled by impurities placed at random positions x_i , where x_i takes on a continuum of values. The RKKY exchange interaction between unit Heisenberg spins s_i and s_i , of species $\sigma(i) = \alpha$ and $\sigma(j) = \beta$, is given by

$$
J_{ij} = \cos(2\phi_{ij}) \overline{J}_{\alpha\beta}(|\mathbf{x}_i - \mathbf{x}_j|), \qquad (2)
$$

$$
\bar{J}_{\alpha\beta}(r) = A_{\alpha\beta}/r^3,\tag{3}
$$

where the $\{\phi_{ij}\}\$ are independent, *random* phases.

At $T \leq T_g$ each spin has a frozen thermal average $\langle s_i \rangle_T$ which is parallel to the average local field h_i and depends on it by a Brillouin function, $|\langle s_i \rangle_T|$ $= B(|\mathbf{h}_i|/T)$, where $B(x) = \text{coth}x - x^{-1} \cong x/3$. Also, $h_i = \sum_j J_{ij} \langle s_j \rangle_T$, which gives a set of equations to be solved self-consistently.

I now define Edwards-Anderson order parameters for each species, $q_{\alpha} = (\langle s_i \rangle_T^2]_{\sigma(i) = \alpha}$, averaging over all spins and configurations but keeping the different species α distinct; in the same spirit an average local field \bar{h}_{α} is defined for each species, $\bar{h}^2_{\alpha} = [|\mathbf{h}_i|^2]_{\sigma(i) = \alpha}$. Taking the approximation $\langle s_i \rangle \frac{1}{T} \rightarrow q_{\sigma(i)}$ [depending only on $\sigma(i)$, we get

$$
\overline{h}^2_{\alpha} = \left[\sum_j \left[J_{ij}^2 \right]_{\phi} q_{\sigma(j)} \right]_{\sigma(i) = \alpha'}, \tag{4}
$$

averaging over the random phases first and then over positions. Collecting the q_{α} and performing the averages, we have

$$
\bar{h}^2_{\alpha} = \sum_{\beta} K_{\alpha\beta} q_{\beta},\tag{5}
$$

where

$$
K_{\alpha\beta} = \int_{\xi_{\alpha\beta}}^{\infty} 4\pi r^2 dr C_{\beta} [\frac{1}{2} \overline{J}_{\alpha\beta}(r)^2]
$$

= $\frac{2}{3} \pi C_{\beta} A_{\alpha\beta}^2 \xi_{\alpha\beta}^{-3}$. (6)

Note that a cutoff $\xi_{\alpha\beta}$ is needed to prevent a divergence. Mathematically, this is due to the continuum distribution of impurity positions x_i which allows rare, arbitrarily close pairs. Actually, such close spins lock together (ferromagnetically or antiferromagnetically) at $T >> T_g$ and do not contribute to the fluctuations which determine T_g . Therefore, I argue that the cutoff should be chosen so that no one term in the summation inside (4) is counted if it exceeds $(\epsilon \overline{h}_{\alpha})^2$, where ϵ s a parameter of order unity, 5 i.e.,

$$
\frac{1}{2}\overline{J}_{\alpha\beta}(\xi_{\alpha\beta})^2 q_{\beta} = \epsilon^2 \overline{h}_{\alpha}^2.
$$
 (7)

This choice 6 is the essential step of the derivation.

Substituting from (3) , (6) , and (7) into (5) , we get

$$
\overline{h}_{\alpha} = \sum_{\beta} (2\sqrt{2}\pi/3) \epsilon C_{\beta} A_{\alpha\beta} q_{\beta}^{1/2}.
$$
 (8)

A solution is $q_{\alpha} = 0$; as T decreases, this goes unstable when Eq. (8) (linearized in $\{q_\alpha^{1/2}\}\)$ first has a nonwhen Eq. (8) (linearized in $\{q_\alpha^{1/2}\}\)$ first has a non-
rivial solution, which defines T_g . Using $q_\alpha^{1/2} \cong \bar{h}_\alpha/3T$ from the Brillouin form for $\langle s_i \rangle_T$), we find $Tq_\alpha^{1/2}$ $=\sum_{\beta} M_{\alpha\beta} q_{\beta}^{1/2}$, where $M_{\alpha\beta} = (2\sqrt{2}\pi/9) \epsilon C_{\beta} A_{\alpha\beta}$, so that T_g is given by the largest eigenvalue of the matrix $(M_{\alpha\beta})$. Now, for the RKKY interaction, $A_{\alpha\beta} \propto V_{\alpha} V_{\beta}$, where V_{α} is the local-moment-conduction-spin coupling of species α , so that $|A_{\alpha\beta}|=(A_{\alpha\alpha}A_{\beta\beta})^{1/2}$; then $(M_{\alpha\beta})$ is of rank 1 and its largest eigenvalue is

$$
T_g = \sum_{\alpha} (2\sqrt{2}\pi/9) \epsilon A_{\alpha\alpha} C_{\alpha}, \qquad (9)
$$

which implies (1) as claimed. The derivation works for any number of impurity species.

I thank Ravin Bhatt for helpful comments.

Christopher L. Henley $^(a)$ </sup> **AT&T Bell Laboratories** Murray Hill, New Jersey 07974

Received 6 May 1985

PACS numbers: 75.40.Fa, 75.30.Hx

(a) Current address: Physics Department, Cornell University, Ithaca, N.Y. 14853.

¹D. C. Vier and S. Schultz, Phys. Rev. Lett. 54, 150 (1985).

2J. L. Tholence and R. Tournier, J. Phys. (Paris), Colloq. 35, C4-229 (1974).

³S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975).

4S. Kirkpatrick and D. Sherrington, Phys. Rev. B 17, 4384 (1978).

⁵Susceptibility measurements on $AuFe$ in the dilute limit Ref. 2) give $T_g/C \approx 2.34 \times 10^{-36}$ erg cm³, while $A \approx 2.80$ $\times 10^{-36}$ erg cm³ from the low-temperature susceptibility [L. R. Walker and R. E. Walstedt, Phys. Rev. B 22, 3816 (1980)]. Thus [Eq. (9)] $\epsilon \approx 0.84$ experimentally.

980)]. Thus [Eq. (9)] $\epsilon \approx 0.84$ experimentally.
For one species Eq. (7) leads to $\xi = (\frac{4}{3}\pi\epsilon^2 C)^{-1/3}$; if $\epsilon = 1$, this is the cutoff of U. Larsen, Solid State Commun. 22, 311 (1977), Eq. (3).