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Distorted 4f -5 d Hybridization as a Jahn- Teller Phenomenon
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Stimulated by ESR measurements in SmB6.Er + we have ascribed the unusual g-factor behavior
of the Er + ground state, which is extraordinarily isotropic, to a new kind of Jahn-Teller-type
phenomenon. The 4f -51hybridization deformations of the Sm neighborhood adopt the role which
in conventional Jahn-Teller systems is played by nuclear distortions. Arguments for this proposi-
tion and numerical results are given.

PACS numbers: 76.30.Kg, 71.70.Ch

dered in accordance with the point symmetry of the
Er3+ center. In our model, however, we assume that
this Hilbert space is built up by only one Atg and one
Ea state (three-level model). The Ata-Es excitation
then is coupled to the I s state of the central Er3+ ion
as governed by group theory.

Our model bears some similarities to the conven-
tional JT situation. The role which there is played by
the motion of the lattice nuclei is adopted in our
model by valency-mixing excitations. Therefore the
general electronic state of Er3+ gives rise to a distor-
tion within the Sm core clouds rather than in the nu-
clear position. Hence one can denote our model as a
"mixed-valence JT effect. "

To derive our Hamiltonian we first consider the
neighborhood established by the six Sm ions. For any
single Sm2+ ion the basic hybridization process will be
one which transmits an electron from a 4f shell to a Sd
shell either at the same Sm2+ ion or at one of the five
neighboring Sm2+ ions. We need not specify this fur-
ther. Combined, all these elementary processes estab-
lish a reducible high-dimensional representation of the
central point group. If we disentangle this representa-
tion into its irreducible components, a sequence of col-
lective states evolves. Since the basic 4f-Sd hybridiza-
tion process is low-energetic ( —30 I0,4 the distance
between these collective states also will remain low-
energetic. Any transition between two of these states
the product of which has representations contained in
I sx I 8 may couple to the I s states of the central Er +

ion. In our minimal model we assume the lowest col-
lective Sm state to be of A tg type and take a single Eg
state as a representation of the higher states. In the
Er + subsystem we consider a single I 8 state. %e
then end up with a product Hilbert space of
(3 ts+ Es) x I s nature.

The Hamiltonian of the Er-Sm system reads

This work has been stimulated by ESR measure-
ments (Sturm and co-workers' ) at an Er3+ defect
which is embedded in a crystalline surrounding of
BaBs, CaB6, YbB6, or SmB6. It turned out that Er3+
behaved differently in a valence-mixing neighborhood
(SmB6) than in others, although the crystal symmetry
was the same. Specifically, in the SmB6 surrounding
the ground state of Er3+ is a I's state in contrast to the
I 6 nature of the Er3+ ground state in the other crys-
tals. Thus in SmB6 one must have an additional in-
teraction which allows a I"

s state to move below the I 6
state. A further hint for such an interaction is the un-
typically isotropic nature of the I s state ESR spectrum.

If a central degenerate electronic state interacts with
the excitations of a surrounding subsystem, the total
ground state is lowered. This lowering is especially
pronounced if the surrounding is a "soft" one (i.e. ,
one with low-energetic excitations). If the coupled
system has the same point-symmetry group as the two
subsystems, the symmetry species (e.g. , I s) of the
lowered ground state (as well as that of the excited
states) will remain unchanged.

There seem to be only two interaction options which
allow a I s state to relax in a "soft" surrounding. One
is the conventional vibronic interaction, as considered
by Jahn and Teller [1937, "Jahn-Teller (JT) distor-
tion"] and the other would be the interaction with the
very low-energetic excitations of the 4f' Sd hybridiza--
tion sequence of the Sm cores. Since experimentally
the effect is only observed in a "mixed valence" sur-
rounding, we believe that the latter option is the only
possible mechanism. A review of the intermediate-
valence description is given by Jefferson and Stevens. 3

Our model is a "minimal model" in the sense that
we incorporate in it only the lowest flexibility of the
surrounding which one could think of. The Sm ions
collectively establish a multiple sequence of states or-

I

H= e(Ct Ct+ C2 C2) + K[(at at —az a2 03 03+ a4 04) (Cp Ct+ Ct Cp)

+ ( at 03+ a3 Qt + 02 a4+ a4 Qz) (Cp C2+ C2 Cp) ].
Here the electronic oPerators cp, ct, and c2 act in the [3ts, E) valency mixing subsPace, whereas at, az, a3, and a4
refer to the I s state of the Er3+ ion. The interaction part has been chosen according to group theory.
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The Hamiltonian (1) can be diagonalized exactly. This can be done easily with an Ansatz for the wave functions
of the form

~4+3/2) = (1+2n ) [~ + 2, cp ) n(~ + —2,ct ) +
~ + —,', c2 ) )],

[4+ty2) = (I+2n ) ' [l + —,', cp ) +n([ + —,', ct ) —
I + —', , c2 ) )].

(2)

These functions constitute a basic set of I s type and
their structure is given by group theory.

~

+ —,') and

~

+ —', ) are eigenstates of the angular momentum J= —',
which describes the I s Er3+ ground state. The param-
eter n is a measure of the hybridization of the new
ground state, which would be absent (n = 0) if the in-
teraction is switched off. The energy expectation
value calculated with the functions (2) is

E(n) =e(2n —4nK/e)(1+2n') (3)
This is depicted in Fig. 1. E(n) is minimal for

n =n(K) = —6[1 (I+8K /c ) ]/4K. (4)

In this case the functions (2) are exact eigenfunctions
with the eigenvalue

E(K) = e [1—(1+8Kz/e )'~2]/2, (5)

which is seen to decrease monotonically with rising
coupling parameter K.

The 4f-Sd collective hybridization of the six Sm2+
ions surrounding Er3+ may be characterized by quad-
rupole moments. It turns out that only the two Ecom-
ponents of the quadrupole, which we denote by Qt
and Qz, are involved. We may evaluate these com-
ponents as the expectation values of quadrupole opera-
tors given in the electronic operators cp, ct, and c2,
but we do not write down these expressions here. Us-
ing the basic functions (2) we then may define dimen-
sionless quadrupole coordinates by means of Qt2
+ Qz = [2n/(1+2n )] ~ —,'. Since the hybridization
parameter n also measures the energy [via Eq. (3)],
the ground-state energy may be expressed as a func-
tion of the quadrupole components:

E(g,g ) = —,
' (I —[I —2(g'+ g')' 'H —2K(gt'+ g2 )'~'. (6)

It is very illustrative to draw this function in a two-dimensional picture. This is done in Fig. 2. It is this figure
which may be conceived as the analogy to the famous "Mexican hat" known from the conventional work on the
Ex e (or the isomorphic I's && e) JT problem.

The coupling to the magnetic field is given by5

H(1 s) =gJp, B[aH J+ b(H„J„+H J +H,J, )],
where the parameters a and b are defined by

—,'a+-,'a= g= &-,
' )J, ~-,'), —2a++I =P= &-,

' )J, ~-', ).

(7)

With the eigenfunctions (2) the matrix elements of the interaction Hamiltonian (7), which are nonvanishing
between the Er I s states only, can be calculated. The eigenvalues read

pt z=0.5(P + Q ) + [(P —Q ) ——,
' (P+ Q) (P —3Q)(3P —Q) (nt n2 + nt n3 + 1l2Pl3 )] (9)

where nt, nz, and n3 are the direction cosines of the
magnetic field and

E(c )

P = [P n2(g —P) ]/(1+ 2n—'),

Q = [Q+n2(Q —P) ]/(1+2n2).
(10)

One can see that the Zeeman parameters P and Q are
changed because of the Er + -Sm interaction (1)
described by the hybridization parameter n. From the
eigenvalues (9) we can calculate the ESR spectrum of
this ground state which involves the valency mixing in
the six Sm neighbors. In Fig. 3 the g values of the
pure uncoupled I s Er ground state (dotted lines) and
the g values of the coupled system (1) (full lines) are
shown. It turns out that this mixed ground state
displays a remarkably isotropic ESR spectrum, which is

FIG. 1. Er3+ ground-state lowering by 4f 5d hybridiza--
tion of the Sm + neighborhood. o. is the hybridization
parameter (see text).
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FIG. 2. Er + ground-state dependence on the Sm + hy-
bridization quadrupole. Qt and Q2 are the quadrupole vari-
ables of E, species. Q~ and Q2 are dimensionless quantities
such that Q$+ Q2 ~ ~. E;„=E(~)=e[l —(1+8~2/
62) 1/2 j/2
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FIG. 3. Calculated ESR spectrum of a I 8 state from our

distorted hybridization model. Zeeman parameter P
= —0.4, Q= 4.4, coupling parameter ~=3+. The dashed
lines result from a pure Er + state of I 8 nature.

much more isotropic than one evolving from a pure I'
s

crystal-field state.
To explain the experimental results we have to con-

sider in addition the neighboring I"
6 state, which mixes

with the I s state via the magnetic field. The experi-
mental results, as found by Sturm and Elschner, ' are
given in Figs. 4 and 5. The results of our calculation
are shown in Fig. 6, where the coupling parameter is
chosen as K = 3e. Furthermore, we have employed the
two Zeeman parameters P= —0.4 and 0=4.4. The
I s-I'6 distance we have taken from experiments'
(b, =5 K). Comparing the results in Fig 3and. Fig. 6
one can see that the I 6 admixing separates two transi-
tions and we end up with four lines. The anisotropy of
the lines, however, is nearly unchanged.

We want to emphasize that our model is of
"minimal" nature, involving only a single coupling
constant. Nevertheless it explains the experimental
data quite well. If we extend our "minimal model" to
a more realistic one by adding a second pure electronic
Er3+ 1 s state the anisotropy can be removed further.
Then a more quantitative comparison with the experi-
mental data may be possible.

We propose in this paper a new coupling mechanism
which seems to play the dominant role, when a local-
ized degenerate electronic state interacts with the
mixed-valence state of the surrounding host crystal.
In view of the analogy to the conventional Jahn-Teller
situation we call this model a "valency-mixing" Jahn-
Teller model. We strongly believe that our model is
physically preferable to a conventional Jahn- Teller
model for the following reasons:

(1) To explain the experimental data by vibronic in-
teractions, on the one hand, one must postulate a very
strong linear electron-phonon coupling. But in addi-
tion to that a strong nonlinear coupling must also be
assumed. Both assumptions do not seem to make
physical sense, since the 4f orbitals of the Er ions are
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FIG. 4. ESR measurements of the Er3+ in the Sm86 (see
Ref. 1). Upper two lines of the I 8 ground-state quartet.

strongly localized and do not provide any appreciable
direct electron-phonon interaction, as seen also from
the experiments in the other crystals (CaB6, BaB6, and
Yb86).

(2) The linewidths b, H of the ESR lines are relative-
ly small. ' This is an additional hint that relaxations
due to lattice vibrations are unimportant.

(3) If we adopt a three-cornered-hat JT model with
both a strong linear and a strong third-order nonlinear
coupling parameter, a numerical trial to fit the experi-
mental results reveals that even the best fit is less
satisfactory than in the valency-mixing option. This is
seen if one tries to verify the measured isotropic ESR
result. In the vibronic case one then has to resort to a
P, 0 choice which introduces the isotropy already in the
pure Er 1"s state [see Eq. (6) for2 a = 0, P = 30].

(4) From the calculation done with the conventional
JT model it is found that the anharmonic terms are
necessary to describe the behavior of the experimental
results. To illuminate this aspect, we also introduce a
kind of "anharmonic" description in our model. This
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FIG. 5. ESR measurements of the Er'+ in the SmB6 (see
Ref. 1). Lower two lines of the I'8 ground-state quartet.

FIG. 6. Calculated ESR spectrum of a I"8 state from our
distorted hybridization model including the I 6 admixing.
Zeeman parameter P= —0.4, Q=4.4, coupling parameter
K = 3e, 5 = 5 K (experimental distance between the lowest
I'6 and I 8 states).

can be achieved by application of an extended
Holstein-Primakoff transformation, 6

'r~ = Ct Cp= bt [1—(bt bt+ b2 b2) ]

'r = cpct= [1—(bt bt+ b2b2)]' bt,

p~ = c2 cp= b2 [1 (bt bt+ b2 b2)]

p = cpc2= [1—(bt bt+ b2 b2)] b2,

&p= bt bt + —, (b2 b2 —1), I = —, —b2 b2,
I 1' 1

& (ct ct —cpcp), I = T(cpcp+ ct ct —2c2c2),1

to Hamiltonian (1). Expanding the square roots, one
ends up with a Hamiltonian which involves anharmon-
ic terms of all orders in the operators. If we interpret

q1, 2 (b1,2+ b1,2»~»
Pt 2= (bt 2

—bt 2 )/i J2
as vibrational coordinates and take only the terms up
to the third order, the Hamiltonian (1) has the same
structural form as the conventional electron-phonon
JT Hamiltonian. In contrast, however, to a conven-
tional JT system, the linear and nonlinear coupling
constants cannot be independently chosen, but are rig-
idly fixed by means of the Holstein-Primakoff deriva-
tion.

Finally, we want to stress that the basic 4f Sd pro--
cess of the Sm ions themselves can couple to the nu-
clear motion of the lattice. So, beyond the direct cou-
pling of Ers+ to the valence fluctuations, there may be
an indirect one to the lattice motion, which is mediat-
ed by the Sm-phonon coupling. In our opinion this,
however, is a higher-order effect and therefore of
minor importance with regard to the Er spectroscopy.

We want to thank Professor Elschner and Dr. Sturm
for valuable and stimulating discussions and for the
permission to reproduce their measurements (Figs. 3
and 4).
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