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Dynamics on Ultrametric Spaces
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We present an exact solution to the problem of a random walk on an ultrametric space with arbi-
trary transition probabilities. The solution provides a description of fluctuation dynamics of sys-
tems with many degenerate states separated by a hierarchy of energy barriers. Dynamical behavior
is found to depend on the scaling of barriers with ultrametric distance. We find a range of interest-
ing behavior, from temperature-dependent power-law decay to the Kohlrausch law.

PACS numbers: 75.40.—y, 61.40.Df

Since Mezard et al. ' showed that the space of ground
states of the mean-field spin-glass possessed an ul-
trametric topology, it has been speculated that a
number of other complex systems with highly degen-
erate, locally stable states exhibit this structure. These
include physical systems such as glasses and spin-
glasses, proteins, and "hard" combinatorial optimi-
zation problems such as the traveling salesman prob-
lem, 4 etc. Such systems appear to be widespread and
in general relax very slowly, which suggests that the
dynamics of such structures could have common
features and thus are of general importance. Palmer,
Stein, Abrahams, and Anderson5 (PSAA) proposed a
class of models of hierarchically constrained dynamics;
the context in which hierarchies appeared there was
different from that of Mezard et al. ' Huberman and
Kersz berg used an approximate renormalization-
group analysis to investigate diffusion in a simple, uni-
formly bifurcating space in the special case where suc-
cessive barriers increased arithmetically. A number of
other related special cases have been worked out as
well. 7 8

In this paper we present the exact, general solution
for the dynamics of systems characterized by highly
degenerate, locally stable states separated by energy
barriers defining an ultrametric topology.

Consider the stochastic dynamics of a system with a
countable space of states which evolves in time by
fluctuation from state to state; transitions between
states are thermally activated with rates determined by
the (free) energy barriers separating the states. The
space of states has the metric topology defined by bar-
rier heights in the following sense: Let us rank the
barriers in order of increasing magnitude
& b, 3 (.. . & b, k (. . . ; we will say that two states

are separated by distance d if the (free) energy barrier
for a transition between them is Ad. This problem can
be formulated as a random walk on the space of states.

The structure of the space we will consider is
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FIG. 1, A simple bifurcating ultrametric space. As mea-
sured from site 0, site 1 has an ultrametric distance of 1,
sites 2 and 3 have an ultrametric distance of 2, and sites 4—7
have an ultrametric distance of 3.

presented in Fig. 1. The random walk occurs only on
the top level, at points 0, 1, 2, 3, . . . . The total
number of points equals 2", n = 0, 1, 2, . . . . The ul-
trametric distance d between two points is given by the
number of branches one must descend from the top
level before the branches merge. The walker en-
counters barriers for any jump, and the size of the bar-
riers depends on the distance traveled in the jump.
The barriers may be arithmetically increasing, have a
random distribution, and so on, depending on which
model one chooses.

Let the probability of the particle being found at site
i at time t be given by P, (t); hence, g,~="o'P, (t) =1.
Further, let the probability per unit time of jumping an
ultrametric distance of 1 be given by et, of jumping to
one particular of the two sites an ultrametric distance 2
away, e2, of jumping to one particular of the four sites a
distance 3 away e3, and so on. The dynamical equation
governing the time evolution of P ( t) is

BP(t)/Bt = eP(t).
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The transition matrix e is
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where the block E2 is a 2x 2 matrix with all entries e2,
E3 is a 4x4 matrix, and Ez is a 2" '&&2" ' matrix
with identical entries eq and Ep= (et+262+4e3
+. . . + 2 e„).Note that this matrix is of the Parisi
form. 9

We use for convenience the initial condition
Pp(0) =1, P, (0) =0 for all i ~1. We shall be in-
terested in studying the behavior of both the auto-
correlation function Pp(t) and the average distance
traveled in time t:

(d(t)) = X„d(40)P(t), (2)

where d(k j) is the ultrametric distance between site k
and site j. If the walker is at a unique site with proba-
bility one at time zero, the behavior of both of these
quantities is independent of the starting site.

We now find the eigenvalues and eigenvectors for
the general 2"&& 2" matrix e. Because e is the transition
matrix for a stochastic process, all of its eigenvalues
but one will be negative. The one nonnegative eigen-
value is zero, with eigenvector P such that P, = 2 "for
all /. This corresponds to the stationary distribution to
which the system evolves at long time. A little
thought will convince the reader of the following as-
sertions:

(1) The eigenvalue Vip=~p et is 2—" '-fold degen-
erate. Its eigenvectors can be constructed by partition-
ing of the vector elements into groups of two. Each
eigenvector has nonzero entries in only one group of
two, and the sum of the entries is zero. This eigen-
value measures the rate of escape from a single site.

(2) The eigenvalue qt = op+ et —2e2 is 2" -fold de-

=2a + + X a„(m(n—1),
k=m+2

l =2a„.
(4)

If hopping is thermally activated and if the particle en-
counters a barrier of size b, in hopping a distance m,—a /T
then a = e at temperature T (we set the attempt
frequency cop= 1). Note that with this definition of
barriers there exists only one barrier 6 which
separates a cluster of 2 ' sites from the initial site.
Barriers are then associated with the branching points
in Fig. 1.

As an illustrative example, let us consider the case
of eight sites (n = 3). The initial condition Pp(0) = 1,
P, (0) = 0 (i ~ 1) leads to the solution

generate. The eigenvectors here correspond to all par-
titions of vector elements into groups of four such that
only one group of four has nonzero entries. Of this
group, the first two elements are equal, and the second
two are their negatives. This eigenvalue corresponds
to the rate of escape from a cluster of two neighboring
sites.

(3) In general, the eigenvalue q (0~ m ~ n —1)
is 2n ™-folddegenerate and corresponds to the es-
cape rate from a cluster of 2 neighboring sites. Its
value is

lm p+ X k m+1 (3)
k=1

The eigenvectors are obtained by grouping the vector
elements into groups of 2 +', with only one group
having nonzero entries. The sum of all elements in
this group is zero, with the first half of the elements in
the group all equal and the second half their negatives.

(4) There are only two nondegenerate eigenvalues:
n —l

i&Tt= p-e+ X 2" 'e„—2"
k= l

which corresponds to an n-site hop, and Yi„=0.
In order to simplify the notation, we shall set

so that Xp & Xt & A2 » . . . A.
„

& X„=O. Also, we set a+=2" 'ez (k ~ 1); aq
represents the probability per unit time of jumping an
ultrametric distance k (i.e., to any of the 2" ' sites a
distance k from a given starting site). Then Eq. (3)
becomes

1
1
1

P(t) =2 ' +2 'e
1
1

.1.

with the A. t, given by Eq. (4).
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We are now ready to write down the exact solutions for Pp( r) and {d ( r) ) in the general 2"-site case:

n —1 n

Pp( r) = 2 "+—X exp( —m ln2) exp( —2a + i r) exp( —a; t)
m=0 i =m+2

r

n —1

(6)

(d(t)) = (n —1)—X exp( —2a +it) ] [ exp(—
m=0 i= m+2

The product term in Eqs. (6) and (7) is equal to 1 in
the particular case m = n —1. We note that P(t) cor-
responds to the relaxation function q (t) of PSAA, and
that in the limit n ~ we may write

Pp(r) = —X w e (8)
m=0

which has the same formal structure as Eq. (7) in
PSAA (with A. = r ) Aco. rrespondence can there-
fore be drawn between certain special cases described
here and certain of those in PSAA. Relaxation times
for various levels in the PSAA model would then cor-
respond to eigenvalues of the evolution operator, and

a;t) + Pp(r). (7)

their weights to their degeneracies. Physically, the fas-
ter modes correspond to escape from smaller clusters
of states, and the slower modes to escape from larger
clusters.

We can use Eqs. (6) and (7) to study various cases.
The simplest one is that with a uniform barrier b, at
every branch point; that is, a jump of distance 1 in-
volves surmounting a barrier 5, of distance 2, 2h, etc
so that barriers linearly grow with distance m, i.e. ,

= mA and ak=R", where R =e . This is simi-
lar to the case studied in Ref. 6 and also corresponds
to model (a), (d) of PSAA. Using Eqs. (4) and (6)
and normalization of probabilities, we find

n —1

Pp(t) =2 "+—,
' exp[R" +'t/(I —R) J X expI —m ln2 —[(2—R)/(1 —R) JR~+'t).

(10)

This formula is exact. We now take the limit n ~, recalling that R ( 1, and convert the sum to an integral.
The integral can be solved exactly in closed form, and we find

—T 1n2/a f

Tln2 R 2 —R T»2~& Tln2 R 2 —R
1 —R 6 '

1 —R

where y(a, b) is an incomplete gamma function. As
t~ ao,

Pp(t) —t Th'~~ O(e '/r), —

and we find a temperature-dependent power law with
an exponent which vanishes as T 0 and diverges as
T ~. This high-temperature limit is to be expected
because as T ~ a hop to an infinitely distant site is
as probable as a local hop.

While we can write down an exact formula for
(d(t)) for finite n, it is really the long-time behavior
as n ~ that interests us, and we will simply present
that:

lim (d(t)) —(T/b. )lnr.f~ ao
(12)

In fact, this result can be rederived by a very simple
scaling argument: If we rescale the time by a factorR, all sets of neighboring points on the top level be-
come indistinguishable, and we are left with an effec-
tive lattice which is one level lower. This results in a
shift of 1 in the ultrametric distance, which again leads
exactly to Eq. (12).

With Eqs. (6) and (7) we can solve any reasonable
case of interest. Rather than solve a variety of special

cases, however, we make the following observations
about the general behavior of the dynamics of simple
ultrametrics (i.e. , uniformly bifurcating or multifurcat-
ing trees).

(1) The dynamics [i.e., behavior of Pp( t) and
(d(t)) ] on any single space is not universal, as has
sometimes been claimed. The long-time dynamics
depends crucially on the rate of increase of barriers 5
with distance m. The slower the rate of increase of

, the faster the relaxation at long times.
(2) There is a minimal rate of growth of 6 with m

below which the random walk becomes unstable; that
is, if b, does not increase fast enough with m, then
Pp(r) = 0 and (d(t) ) = ~ (in the n ~ limit) for all
t ) 0. This is easy to understand; suppose, for exam-
ple, that all barriers are equal (as in the T ~ case,
for example). Then any jump of any distance is equal-
ly probable, and since the number of sites a distance m

from any point diverges as 2 i, the theory cannot
then be convergent.

We find that the slowest rate of growth of 6 with
m that leads to a stable random walk is the case
A~=hlnm (for large m) with the requirement that
5 & T; here 6 = T is the boundary between stability
and instability. The long-time behavior of Pp(t) in
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this case is the famous Kohlrausch law,

Pa(r) —e

with p = T/A. When T 5, we approach Debye
behavior, and for T) 5, the model becomes unstable.

The picture presented here is qualitatively indepen-
dent of whether there are twofold, threefold, or p-fold
multifurcations at each point. However, ultrametric
space need not uniformly multifurcate, and we have
not studied the behavior of such random ultrametric
models.

In summary, we have found an exact solution for
the problem of dynamics on an ultrametric space.
Long-time behavior is dependent on both the structure
of the space and the increase of barriers with distance.
Linear increase of barriers yields a temperature-
dependent algebraic decay of the autocorrelation func-
tion. The marginal case corresponds to logarithmic in-
crease of barriers which yields a Kohlrausch law with
temperature-dependent P. Models with barriers in-
creasing with distance slower than logarithmically are
unstable. The picture discussed here differs from that
of the mean-field spin-glass: The transition probability
from state a to b equals that from b to a for all states
(implying that all states are degenerate); ultrametric
distance is defined in terms of (finite) barriers, and
the space uniformly bifurcates at all levels. However,
it is intriguing to note that the recent analysis'a of the
dynamics of a short-ranged Ising spin-glass in three
dimensions shows that, above Tg, a power-law decay is
observed for dynamic processes taking place on length
scales within the coherence length, and the decay

crosses over at longer times to the faster Kohlrausch
law. Both the power-law and Kohlrausch exponents
were found to depend linearly on T in the critical re-
gime.
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