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Universal Conductance Fluctuations in Metals
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The conductance of any metallic sample is predicted to fluctuate as a function of chemical poten-
tial or magnetic field by an amount of order e2/h ( = 4&& 10 ' 0 ') independent of sample size and
degree of disorder as long as the temperature is low enough so that kT and the inelastic-scattering
rate are less than the inverse time to diffuse across the sample. The theory is shown to be in excel-
lent agreement with numerical simulations and explains many features of experiments on small
wires and rings.

PACS numbers: 72.15.—v, 72.20.My

Recent experimental studies' of resistance in small
metallic wires and rings (typical dimensions 400
x 400X 8000 A ) at low temperatures have uncovered
unexpected fluctuations (typically 1 part in 10 ) as a
function of magnetic field. Numerical simulations by
Stone2 have reproduced many of the observed
features, making it clear that the fluctuations are a
consequence of quantum interference when the inelas-
tic diffusion length exceeds sample dimensions. How-
ever, it remains unclear how the 10'k fluctuations
found in simulations of relatively small samples should
be extrapolated to the experimental situation. Since
the experiments and simulations are all performed in
the highly conducting diffusive regime, kpl » 1 (l is
the mean free path), it is possible to treat the problem
by use of weak-scattering diagrammatic techniques.
Here we report the results of such a calculation which
show that conductance fluctuations of the order of
e2/h are a universal feature of quantum transport in
the low-temperature limit. In particular, they are in-
dependent of both the degree of'disorder and the sample

size at zero temperature. This simple result is con-
sistent with both experiments and simulations, show-
ing that the experiments actually revealed something
fundamental about quantum transport, rather than
simply "finite-size effects. "

We consider the conductance of noninteracting elec-
trons in the following system: a finite disordered re-
gion of volume V = L„d 'L„extended to + ~ in the z
direction by the attachment of ideal "leads, " with an
electromagnetic field applied only to the disordered re-
gion. The transport of electrons through the disor-
dered region can be considered as a scattering problem
where electrons from the leads are transmitted or re-
flected by the random potential. It was shown3 that
the Kubo formula for the conductance of such a sys-
tem (in units of e /h, including spin) is equivalent to
g = 2 Tr(t t ), where t is the transmission matrix. This
expression for g should be valid for L, » l, the re-
gime of interest.

The quantity that we calculate is the correlation
function

F(bE, bB) = (g(Ep, B)g (Ep+bEB +b 8)) —(g (Ep,B)),
where the angular brackets denote the ensemble aver-
age. Our hypothesis is that the dependence of g on 8
and E for a given sample is effectively random, so that
the correlation function will decay to zero over some
range in bE and 4B. Then an ensemble average at
fixed E, hE, 8, and 68 is equivalent to an average
over many values of E and 8 at fixed AE and AB.

, Thus the quantities we calculate can be directly com-
pared with experiment in a single sample: F(bE, bB)
in metal-oxide-semiconductor field-effect transistors
and F(bE = 0, bB) in any metallic system.

In an exact eigenstate representation F(b,E, b 8) in-
volves the impurity average of a product of eight wave
functions. The wave functions experience the same
impurity potential and it is known that on the average
wave functions nearby in energy are correlated in

space. 4 s Such correlations are the consequence of
quantum diffusion. To evaluate the impurity average,
we write I' in terms of Green's functions. A diagram-
matic representation of g (based on Ref. 3) is shown in
Fig. 1(a), where the unaveraged Green's function pro-
pagates from r& to r~ and back and is scattered by im-
purities at r2, . . . , r„, and each segment can be either
advanced or retarded Green's functions, G -+. To cal-
culate I' we draw two such loops with the outer and
inner loop representing electrons with Fermi energies
EF and EF + AE and in fields 8 and 8 + 4B, respec-
tively. Upon impurity averaging only those diagrams
in which the impurity scattering connects the two
loops contribute to I'. The most singular diagrams
[shown in Figs. 1(b)—1(f)j are generated by our start-
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ing with two loops with self-energy correction due to
impurity scattering, connecting them with impurity
ladders, and inserting four current vertices in all possi-
ble ways.

To see the general structure of the divergences in
this theory, let us consider an infinite system with
48 = 0. The diagrams can be evaluated in momentum
space, and at T = 0 each impurity ladder in Fig. 1 gives
rise to a diffusion pole (rDq2 —i DER) ' and all the
poles occur with the same q and 4E. The q integration
is then seen to be infrared divergent below four
dimensions as q, , where q, = L ' is a finite-size
cutoff. This infrared divergence is the origin of the
strong conductance fluctuations which do not decrease

I

with increasing sample size. To see this, note that the

standard semiclassical assumptions would imply
rms(g)/g —1/(L )' [where rms(g) = [var(g) ]'i ].
In the metallic regime g is proportional to Ld, so
that we would have var(g ) —Ld 4. The factors
q," "—I. d arising from the infrared divergences ex-
actly cancel all the size dependence in var(g). The ex-
istence of this kind of divergence was first pointed out
by Maldague. s

To evaluate Eq. (1) for a finite sample the diagrams
must be formulated in real space. Consider Fig. 1(b);
because the averaged Green's function 6 is short
ranged, the portion of the diagram connected to the
current vertices yields a constant. The rest of the dia-
gram is proportiona1 to

d3r t d3r'P(r, r', b, E, AB)P(r, r', +LE, hB),
~V &V

where + AE refers to the choice of G — in Fig. 1(b) and P is the diffusion propagator representing the sum of the
ladder diagrams. P satisfies the diffusion equation6

[ —ibE+D( —i vr+ebA) +r;„']P(r, r', bE, AB) =7 '5(r —r'),

where 7 is the clastic-scattering time and AA is the
vector potential corresponding to the difference field
68. The magnetic field has been treated within the
semiclassical approximation, where its effect is simply
to multiply G(r —r') by the phase factor exp(ief'A

ds). Normally such phase factors will then cancel in

~r, rP

(c)

FIG. l. (a) Unaveraged conductance. (b)—(f) Diagrams
contributing to the correlation function; (e) and (f) are ex-
amples of a class of diagrams which cancel each other.

the particle-hole channel, but in this case the particle
and hole experience different fields and acquire a
phase difference which leads to the appearance of hA
in Eq. (2).

In Eq. (2) we have inserted by hand an inelastic-
scattering rate r;„' which may be due to electron-
electron or electron-phonon collisions at finite tem-
perature. We note that usually such a term in the dif-
fusion equation is forbidden by particle conservation;
however, in the present problem, because the two
loops in Figs. 1(b)—1(f) refer to two different measure
ments, they are connected only by impurity averaging
and not interaction lines, and the usual cancellation
between self-energy and vertex corrections does not
occur.

A useful spectral representation of the solution of
Eq. (2) is P(r, r') —g„@"(r)@ (r')/X„, where the @„
and )i„are the eigenvectors and eigenvalues (subject
to the appropriate boundary conditions) of the equa-
tion R @„=X @„and R is the differential operator ap-
pearing in Eq. (2). Then the double integral for dia-
gram 1(b) becomes g„)i„.The boundary conditions7
are determined by the physical requirement that we
have coupling to ideal "leads" in the current direction
and perfectly reflecting walls in the transverse direc-
tions. This implies that BP/Bx =BP/By =0 at the
walls, and P =0 at the leads. For b.8=0, the eigen-
vectors are

sin(m, 7rz/L, )cos(m„mx/L„) cos(m»my/L» ),
where m, =1,2, . . . , ~, m~„=0, 1, 2, . . . , ~, and the
eigenvalues are A. = D (n./L, ) zA. , where

h. ~ = m, + m„(L, /L„) + m» (L, /L» ) + y —i g, (3)

with y = (L,/m. L;„)2, L;„=(D7;„)' the inelastic dif-
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fusion length, and q=b. EL, /tm. D. The evaluation of
diagrams 1(c) and 1(d) is more complicated. In these
diagrams there are single current vertices between dif-
fusions which generate only a single derivative of P.
Therefore, one must calculate matrix elements of the

@„, which do not cancel as they did in Fig. 1(b) by
orthogonality.

So far we have restricted our discussion to the
particle-hole channel. In the presence of normal im-

F (b'E ~+ 0) ( /~ ) (Fl(b) +Fl(c) + Fl(d) ) ~

where

purity scattering we can reverse the arrow in one of the
loops in Figs. 1(b)—1(d) and obtain an equal contribu-
tion from the particle-particle channel. This contribu-
tion is suppressed by a magnetic field and by spin-orbit
and spin-flip scattering. However, we emphasize that
this is not equivalent to including the weak localization
effects which usually arise from the particle-particle
channel because we have not included these effects
within a loop. Our final result for the correlation func-
tion is

(4)

m„,m =0 m =1

Ft(, ) = —8 Re
m„, m& =0 mz=1 nz =2 ~m ~n ~m

(

(6)

Ft(a) =24Re g X
mx, m& =0 mz pz

mn np pq qm

n, q =2 ~m~n~p~q
(7)

and f „=4m, n, /m(m, 2 —. n,2); the primes denote sums
over even or odd integers only.

Equation (4) describes all the properties of the con-
ductance fluctuations as a function of Fermi energy.
First, the result for b, E = Q (q = 0) and L;„' = 0
(@=0) gives us rms(g), i.e., the typical size of the
fluctuations at T=Q. We note again that the size of
the conductor has totaly canceled out, leaving only fac-
tors relating to its shape. In addition, the shape depen-
dence is very weak since the lowest eigenvalue dom-
inates the sums in Eq. (4) as long as L, ~ L„,L».
Hence we find for a quasi-one-dimensional (1D) sam-

ple rms(g) =0.729, for a 2D square rms(g) =0.862
and for a 3D cube rms(g) = 1.088.

The second result obtained from Eq. (4) is the typi-
cal spacing between peaks and valleys in g as a function
of EF. This energy correlation range E, is simply the
half-width of F(bE). This is approximately deter-
mined by the condition q= 1, i e , E, =En.. D. /L, 2,

which is just the inverse time for the particle to diffuse
across the sample in the current direction. 8 In our
scattering picture E, may be interpreted as a resonance
width which is much broader than the level spacing;
and then the conductance fluctuations have an exact
analogy to "Ericson oscillations" of the scattering
cross section in high-energy nuclear collisions, '0 where
the energy correlation range is also the resonance
width.

The predictions of Eq. (4) may be tested by numeri-
cal simulations. In fact, earlier simulations of the
magnetic field fluctuations had provided the first indi-
cation of their very weak size dependence. The
present simulations were performed by the same
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FIG. 2. Conductance correlation function vs b.E (in units
of the hopping matrix element) for two values of disorder

((g) =3.4e2/h and 10.6e /h) for a 200&&20 site wire. The
circles and triangles are numerical results, and the dashed
lines the results of Eq. (4) with no free parameters (E, is es-
timated from the density of states per unit area of a 20&& 20
system with the same disorder). The inset plots rms(g) (in
units of e~/h) vs width for a 2D square and a quasi-1D strip

with length 10 times its width, with and without a magnetic
field. The dashed lines are from Eq. (4).

method 3 on a 2D nearest-neighbor tight-binding
model with random site energies and with the same
boundary conditions as above. The results, shown in
Fig. 2, give excellent quantitative agreement with Eq.
(4) with no free parameters. In particular, the inset
shows that rms(g) is indeed size independent, has the
correct values in 1D and 2D, and is suppressed by a
factor of 1/J2 by a magnetic field. The results for
F(b.E) clearly show the increase in the half-width
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with decreasing disorder, in good agreement with the
relation E, =t7r2D/L, z. Since F(AE) does decay as
4E goes to infinity, as discussed above, we should be
able to obtain the same value of rms(g), not by en-
semble averaging, but by summing over many ener-
gies E; and E; + 4E for a given impurity configuration;
this is verified by our simulation (such a calculation is
shown as the square in the inset).

Now we consider F (b,E = 0, AB ) which describes
the structure in g (8) already observed in small metal
~ires. Two important consequences immediately fol-
low from the fact that only the field difference appears
in the diagrams. First, the size of the oscillations in
field F(48 =0) is exactly as calculated above for the
energy fluctuations in the presence of a field. Second,
the oscillations should persist unchanged at least until
cu, v & 1, the condition for the validity of the semiclas-
sical approximation used above. This corresponds to a
very high field in a metal and explains one of the most
surprising features of the experiments. %e can calcu-
late the field correlation range, B„which determines
the typical spacing of the fluctuations in B. To calcu-
late F(AB) for arbitrary b, B we must solve Eq. (2)
with (choosing a gauge) b.A = e 58 y x. However,
since our genera1 solution for I' is dominated by the
lowest eigenvalue, B, may be obtained simply from
perturbation theory for this lowest eigenvalue, which
gives

A. (m, = l, m„= m~ =0) =1+8k(AB)

for the quasi-1D case. B, is determined by the condi-
tion Sk(8, ) = 1, which gives a result which may be
expressed as 4,/@0 ——J3, where 4, is the change in
magnetic flux through the area of the sample normal
to the field, and 4o ——hc/e is the one-electron flux
quantum (numerical calculations give a nonperturba-
tive result" 4, /4o = 2.4). This area scaling of 8, had
been obtained earlier in simulations, and the predict-
ed 4, agrees well with experiment. '

The energy correlation range naturally sets the scale
kT, = E, for the crossover from a low- T regime,
~here the fluctuations are saturated at their zero-
temperature amplitude, to a high-temperature regime
in which the thermal effects begin to cause self-
averaging. Interestingly enough, this crossover regime
is accessible in small devices, typically occurring in the
range 0.001—10 K. At higher T the fluctuations de-
crease as a slow power 1aw of T. These predictions are
consistent with the T dependence, amplitude, and sat-
uration temperature observed experimentally. ' Al-
though here we report calculations on wires, we have
extended the approach to treat metal rings and find"
that the amplitude and behavior of the hc/e
Aharonov-Bohm oscillations' are also described by a

theory of this type.
Our theory describes conductance fluctuations for

weak disorder in 3D, and for weak disorder and sam-
ples shorter than the localization length in 1D and 2D;
it does not apply to the strongly localized regime,
where fluctuation phenomena have been extensively
studied. The surprising result that the fluctuations are
independent of sample size in the metallic regime may
have been anticipated from the scaling theory of locali-
zation in two cases. Near the metal-insulator transi-
tion in three dimensions the conductance is scale in-
dependent and of order e /h. Then we may expect
scale-independent conductance fluctuations, also of or-
der e /h, since the fluctuations are known to be large
in the localized regime. Also in the metallic regime in
20 the conductance is approximately scale indepen-
dent, and since it is the only scaling variable, its fluc-
tuations must also be scale independent. Indeed, a
size-independent error bar from which rms(g) can be
determined was found in numerical tests of scaling
theory. 3 What is truly surprising is that the conduc-
tance fluctuations remain scale independent beyond
these limiting situations.
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