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at Finite Temperature
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Fluctuations of the order parameter of chiral transition in a hot and dense quark gas are exam-
ined in the random-phase approximation with the use of a QCD-motivated effective Lagrangean.
We show that there arise soft modes having a large strength and a narrow width above the critical
temperature, which are analogous to the fluctuations of the order parameter in a superconductor
above the critical point. It is argued that the modes contribute to the cooling of the quark-gluon
plasma.
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In recent years, much effort has been devoted to the
study of thermodynamic properties and the phase tran-
sitions of the quark-gluon system at finite temperature
T and chemical potential p, . Such investigations en-
able us to understand the structure of the QCD vacu-
um and the nature of the quark-gluon plasma (QGP)
which is expected to be realized in an intermediate
stage of ultrarelativistic nucleus-nucleus collisions, the
interior of neutron stars, and the early universe.

t

This Letter deals with the dynamical phenomena re-

lated to chiral transition of hot and dense quark
matter; we examine fluctuations of the order parame-
ter in the Wigner phase and discuss how they affect
physical quantities.

Although it is now controversial as to what is the
most essential mechanism of chiral transition in
QCD, ' we adopt the following Nambu-Jona-Lasinio
(NJL) type of Lagrangean as an effective one which
incorporates the essential feature of chiral transition
and works well in the intermediate scale between chiral
symmetry breaking and confinement;

~=( (ir) —m)y+K[(qq)'+(qiys y)' (y q)'——(Pt'ysP) 1,

where we have confined ourselves to Nf = 2 and
N, = 3, and m denotes an averaged value of the current
mass of u and d quarks. Note that the interaction part
of (1) has a form of a local version of the determina-
tional interaction induced by instantons in the
T=p, =0 world. Using (1), we have already exam-
ined the vacuum and collective excitations in the
T= p, =0 system and shown that (1) reproduces the
relations among the physical quantities such as the
Goldberger-Treiman relation, one of the current alge-
bra relations f m2 = —m(QQ) and so on. All free
parameters included in (1), the coupling strength E
and the momentum cutoff A, were determined so that
the pion decay constant f and the pion mass m are
reproduced within the lowest order of the chiral per-
turbation; the results are K = 0.13 fm2 (0.092 fm2)
and A4 = 1007 MeV (A3 = 825 MeV) for the four-
(three-) momentum cutoff scheme. The dynamical
quark mass MD and the vacuum condensate of u and d
quarks ((uu) = (dd) ) generated by (1) are 240 MeV
and (—249 MeV) respectively, for these parameters.
Here it should be noted that A4 characterizes the scale
of chiral transition4 and the value of it is larger than
the scale of confinement (AQcD 200 MeV); this fact

MD( T P ) = 2g ((4A) ) ~ (2)

where g denotes the effective coupling strength includ-
ing the contribution from the Fock term, g = K (1
+ I/2N, ), and the double bracket denotes a statistical
average. From now on, we neglect the current quark
mass (m); the effect of finite m will be examined
later. The right-hand side of (2) may be evaluated
with the temperature (Matsubara) Green's function
9 o(i, x),

((yy)) = lim Trio(~, 0). (3)

coincides with the picture of the two-scale model at
T=O. ' s In the following, we explore the system at
finite T and p, using the parameters thus fixed. (We
adopt the three-momentum cutoff scheme in this pa-
per for calculational conveniences. )

The dynamical quark mass MD ( T, p, ) depending
both on T and p, can be determined by the self-
consistency condition in the Hartree-Fock theory at
finite temperature
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Here, the Fourier transform of 9 (r, x) is written as tion of the order parameter in the Wigner phase;

yo(p„", p) = [p+ M—D(T, lu. ) —m] (4) D(, q) =~(((T$( )Q( )Q(0)tti(0)))), (5)

where p&+ ——(Ip "+p„, p) with v„" being the Matsubarafl

frequency for fermions, (2n+1)AT. The condttton
that the nontrivial solution of (2) should vanish gives
a critical line T= T(p, ) in the phase diagram, which is
shown in Fig. 1 for MD( T = p, = Q) = 240 MeV.
Above (below) the critical line, the system is in the
Wigner (Nambu-Goldstone) phase. One sees that the
critical temperature T& and the critical chemical paten-
tial p, „are 164 and 289 MeV, respectively. It can be
shown that both T~ and p, „ tend to increase for finite
m, larger numbers of flavor and/or a larger dynamical
mass M (T= p, =Q). Note that our Tx is consistentD
with the value deduced from the lattice Monte Carlo
simulations. 8

We are now in a position to examine collective exci-
tations in the system. For this purpose, let us calculate
the correlation function of a specific pair operator with
the quantum number (J~,I) = (0+, 0) or the fluctua-

where M denotes Fourier transform. Owing to analytic
properties of D(cu, q) and as a manifestation of the
dissipation-fluctuation theorem, ImD(c0, q) turns out
to be proportional to the so-called strength function
S(c0, q) which is the measure of the excitation
strength of collective modes

S(,q) = —(I/ )2gImD', ( )
where D~ is the retarded Green's function which is
obtained through an analytic continuation of the tem-
perature Green's function Q' (v„,q) (v~=2nm. T) on
account of the Abrikosov-Gor'kov-Dzyaloshinskii-
Fradkin theorem. The correlation function of the
pionlike pair operator Qiy5rg is also proportional to
S(cu, q) since we are considering the chirally sym-
metric phase (recall that we are now neglecting the
current quark mass m). Evaluating ~~(v„,q) in the
ring approximation, we get

2g ImD~ = Im(1+ 2grI~) (7)
with

T t t h [G~( o rd p —q)ImG~(po p)+ G~(po+rd p)ImG~(po p q11',q = r an
(27r )

(8)
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where p~= (p, p) and G (G") is the retarded (ad-
vanced) single-particle Green's function for massless
quarks.

G (p, p) =(P+iqsgnPo) (9)

with p"= (p', p) = (go+ p„, p), q ) 0, and G = (
S(c0, q)'s computed for several temperatures at p, =0
are shown in Fig. 2, from which one can see the fol-
lowing points: (i) There is a sharp peak with a narrow
width (10—60 MeV) above Tz which implies the ex-
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istence of (degenerate) elementary excitations, and
the width vanishes at the critical point, (ii) the modes
soften as the system approaches the critical point, and
(iii) they well survive up to T= 200 MeV, fairly
above T„. The qualitative features do not change for
p, &0. The enhancement of long-range correlations,

01 0.2 P (GeV) 0 3
FIG. 1. Critical line calculated by use of the parameters

which reproduce g (=93 MeV) and m (=140 MeV) in
the lowest order of the chiral perturbation.

250MeV
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FIG. 2. Strength function at zero momentum transfer
(q=0) above the critical temperature T„=164 MeV with
p, =0. The shape and the peak position of S(cu, q) for q&0
as a function of ~ —q2 hardly change from those of
S(o), 0).
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equivalently the existence of soft modes, is a direct re-
flection of large fluctuations of the pair operators near
the critical point. The width of the modes, which ar-
ises within the (time-dependent) mean-field approxi-
mation, is caused by the Landau damping' and the
width is found to be narrower than that of the soft
modes in the T= p, =0 world. 4 The narrowness can be
accounted for by the Pauli blocking effect: The parti-
cle states of quarks and antiquarks into which collec-
tive modes might decay are partly occupied with T&0
and/or p, &0 due to the thermal excitations and/or the
finite density; hence the decay rates are suppressed.

To examine how finite m affects the above results,
we show in Fig. 3 the dynamical mass M= MD(T, p)
+ m calculated self-consistently and the real parts of
the masses of o-- and 7r-like modes (i.e. , the real parts
of the poles of the retarded Green's functions for the
respective channels) using the value m = (m„+ md)/
2=5.5 MeV. " The approximately degenerate modes
at high temperature soften as temperature decreases
and split into two branches near the critical point: The
mass of the o--like mode (m ) which keeps lying in
the continuum has the minimum at T= 200 MeV; the
value may be adopted as a critical temperature ( T„)
when the explict symmetry breaking term (m) exists.
The mass of the pionlike mode (m ) decreases mono-
tonously with the decreasing temperature and comes
out from the continuum at about T defined above;
below T&, the mode can be identified as pion, the mass
of which is slightly modified by thermal effects. "

It is worth mentioning that the above soft modes
with a narrow width are analogous to fluctuations in a
superconductor above the critical temperature T,';
the fluctuations give rise to precursory effects such as
an enhancement of the electric conductivity and the
magnetic susceptibility. In our case, the soft modes

—0.8

above T~ are carriers of chirality, isospin, and energy
momentum, so it is likely that the modes affect vari-
ous transport coefficients such as isospin conductivity,
thermal conductivity, viscosity, and so on.

To see an example of the phenomena induced by
the soft modes, let us consider the cooling of the drop-
let of QGP produced by the ultrarelativistic heavy-ion
collisions. The cooling mechanisms proposed so far'"
are the hydrodynamical expansion and the pion evap-
oration on the surface through a formation of the color
flux tube, although Banerjee, Glendenning, and
Matsui'5 have pointed out that the latter mechanism is
not so important compared with the former. Here we
argue that the soft modes provide us with another
mechanism of the QGP cooling: Our low-energy soft
modes which are color-singlet will be thermally excited
inside the droplet, then they turn into pion at the sur-
face where T =—T~ with no need for the formation of
the flux tube and transmit the energy momentum out-
side, which causes the cooling of the droplet.

We have investigated in this Letter the fluctuations
of the order parameter in the signer phase of chiral
symmetry and shown that they become elementary ex-
citations near the critical point in addition to the
quarks and gluons. Finally, we make a brief comment:
In our model interaction with %f = 2, the chiral transi-
tion is second order. For the larger numbers of flavor,
the order of the transition may depend on the effective
interaction one adopts. However, in the case of a
weak first-order transition, soft modes around the
chirally symmetric vacuum exist and give rise to the
fluctuation effects discussed above. For instance, in
the effective potential V,«(o-) calculated by Gold-
berg'6 who used the SU(3) S SU(3) linear a- model
with a determinantial interaction, one can see the
weakening of the restoring force around the symmetric
vacuum (o-=0) as the system approaches the critical
point, which implies an existence of the soft modes.
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Nuclear Theory Group at Kyoto University in this
work. The computer calculation has been financially
supported by the Institute for Nuclear Study, The
University of Tokyo.
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FIG. 3. Dynamical quark mass M=MD(T, p, )+ m, and
the masses of a mode (m ) and 7r mode (m„). The dashed
line denotes the 2M threshold from which the qq continuum
starts.
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