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New Langevin Equations for a Translating and Simultaneously Rotating Asymmetric Top
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By the writing of the translational Langevin equation in a rotating frame of reference (1,2, 3)'
and the rotational equation in the usual moving frame (1,2,3), it is shown that the statistical corre-
lation between the angular and linear center-of-mass motion of a diffusing asymmetric top can be
described naturally and in detail. Computer simulation is used to illustrate the symmetry class and
time dependence of many new types of autocorrelation and cross-correlation functions suggested by
the structure of these equations.

PACS numbers: 05.20.—y, 05.40.+j

This Letter shows that the diffusion in three dimen-
sions of an asymmetric top molecule requires adequate
consideration of the translational diffusion of the
center of mass superimposed' s on the molecule's own
rotation. If this is not taken into account, a great deal
of statistical information is lost, and the theory of
molecular diffusion is then unable to explain the nu-
merical results now available. 9 "

Computer simulation is used in this Letter to pro-
vide a variety of new cross-correlation functions. By
writing the Langevin equations for rotation and
translation in the appropriate frames of reference, I
show in this Letter that certain new types of cross-
correlation exist both in the laboratory frame (x,y, z)
and in the moving frame of reference (1,2,3) of the
principal molecular moments of inertia. Others exist
in the frame (1,2,3) only; still others vanish in both
frames, and so on.

Consider a frame of reference (1,2, 3) ' whose origin
is the same as that of the laboratory frame (x,y, z) but
which rotates at an angular velocity ta. This is taken to
be the same as the resultant angular velocity of the
diffusing molecule defined with respect to frame
(xy, z), so that

[Ql ] (x,y, z) [a1 ] (1,2 3) [a1 ]
( 1 2 3) ~('

The frame (1,2, 3) ' is the rotating frame of refer-
ence, as distinct from the moving frame (1,2,3), which
both rotates and translates with the frame of the prin-
cipal molecular moments of inertia. '

An observer rotating in frame (1,2, 3)' would see
only the resultant translational motion of a molecule
that is also rotating with angular velocity to. The ob-
server and the molecule are always rotating, however,
at the same rate, and the observer cannot, therefore,
be aware of the molecule's resultant rotation [known
to be discernible in frame (x,y, z)]. To an observer in
frame (1,2, 3) ', the molecule's diffusion seems, there-
fore, to be governed by a translational Langevin equa-
tion. The first step in the analysis consists of writing
this in frame (1,2, 3)', which is a "noninertial" frame
of reference with respect to (x,y, z), the static lab-

oratory frame. From elementary dynamics'6 it follows
that

[&1{ )
=—[&+toxrl (2)

[jp ] (~y ):[jp + 2a1 x ~ + tI) x r + to x ( to x r ) ] (1 2 3), .

(3)
On the right-hand side of these equations all the vec-
tors are defined with reference to frame (1,2, 3)'. On
the left-hand side they are defined in frame (x;y, z). In
these equations r is the position vector of the molecu-
lar center of mass, defined by

+p„[v+a1xr](, 3),= [W](1 2 3) (6)

where [W] is a statistical process generated from
j J

the Wiener process [W](„y,) by the frame transforma-
tion' (x,y, z) (1, 2, 3)'. In Eq. (6), 2&ox v is the
Coriolis acceleration, tax (toxr) is the centripetal ac-
celeration, and tox r is the nonuniform acceleration of
the molecule.

It is well known from the theory of rotational dif-
fusion in an asymmetric top" '3 that a1 is also
governed in the moving frame (1,2,3) by the standard
Euler-Langevin equation'~:

It~01 (I2 I3)~02~3 + Ilp 1011 Il ~l
I2to2 —(I3 —Il )m3ml + I2P2o12 = I2 W2,

I3~3 (Il I2)~1~2+ I3P3t03 I3 ~3

(1 2 3) (1, 2, 3)'
The translational Langevin equation in frame (x,y, z) is
well known'2 to be

[is+P„u](„y,)
= [W](„y,),

where p is the translational friction coefficient, a
scalar invariant to any frame transformation, and W is
a Wiener process. '2 Therefore, the translational
Langevin equation in frame (1,2, 3)', the rotating
frame, is

[Q + 2@1x Q + QJ x r + aJ x ( fjl1 x r ) ]
t I
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when the molecule's rotation is superimposed upon its
center-of-mass translation. In Eq. (7), It, I2, and I3
are the principal molecular moments of inertia; t0t, c02,
and co3 are the components of m in the frame (1,2,3);
P t, P2, and P3 are the components in this frame of the
(diagonal) rotational friction tensor'; and Wt, W2,
and W3 are the components in frame (1,2,3) of the ro-
tational Wiener process.

Equations (6) and (7) constitute a complete descrip-
tion of the diffusion of an asymmetric top in three
dimensions in terms of simple Langevin equations.
Their structure suggests the existence of many new
cross-correlation functions involving co, w, and r.
They are illustrated in this Letter by means of conven-
tional computer simulation. [The fully analytical solu-
tion'4 of the fundamental Langevin equations (6) and
(7) is a very difficult problem. 's]

Note carefully that Eqs. (2) and (3) are reversible,
because of the relativity of this type of frame transfor-
mation, ' so that

[t/](t 2 3) [tt+~xr](„[~],= [v+2ro x~+~xr+~ x (~xr)](~y,).

Type Examples
Frames

(x,y, z) (1,2, 3)

(r(t) x~(t) ~(0) xr(0))
( r2) ( 2) 1/2( '

2) 1/2

(a)(t) x c'o(t) m(0))
( 2)1/2( '2)

(A(t) x ~(t) A(0))
(~') (-')"'

(A =—v;a) x r;r)

(~(t) xr(t) ~(0) x [~(0)xr(0)])

(v(t)u)r(0)) '
([~(t) x~(t)]t r(0))

( [~(t) x ~ (t) l ~'(0) )

TABLE I. Symmetry classification of cross-correlation
functions: Achiral asymmetric top CH2Clz (Cz„).The sym-
bol + indicates the existence for 0( t (~ of the cross-
correlation function above the noise of the simulation. The
symbol —means that the cross-correlation function vanishes
for all tin the noise.

Equations (8) and (9) therefore imply the existence in
the laboratory frame itself of new types of accelera-
tions which appear only when the interrelations
between r, tt, and co are considered fully. The
laboratory-frame autocorrelation functions of all the
right-hand-side molecular accelerations and velocities
in Eqs. (8) and (9) exist, and this has been confirmed
in this work by computer simulation. Furthermore,
any vector A defined in frame (xy, z) also exists in
frame (1,2,3), and vice versa. The relevant frame
transformation relations in this case are available else-
where. 9 " This implies that these autocorrelation
functions also exist in this frame, and we have also
verified this by computer simulation. These results
will be reported in full elsewhere.

In this Letter we provide a summary table (Table I)
of the properties of some of the new cross-correlation
functions in both frames, (xy, z) and (1,2,3). Note
that all the autocorrelation functions of the vectors in
this table exist in both frames (1,2,3) and (x,y, z) fort( ~. Although the vector cross-correlation func-
tions of type IV vanish in both frames, some of the
off-diagonal elements of the equivalent tensor cross-
correlation functions might well exist 0 ( t (~. This
will be the subject of future computer simulations.
Note finally that all these correlation functions refer to
the diffusion of one molecule in a bath of others. A
great amount of new information is obtainable when
the analysis is extended to include correlations
between different molecules.

These results were obtained from a molecular-

IV (~(t) x~(0) ~(p))
( 2) (~2) I/2

(v(t) xa)(t) r(0))
(~2) 1/2( 2) t/2( 2) 1/2

(~(t) xr(t). v(0))
(

'
2) 1/2(r2) 1/2( 2) 1/2

(m(t) xr(t) v(0))
( 2) 1/2(r2) t/2( 2) 1/2

(~(t) xm(t) .~(0) xr(0))
( 2) 1/2( 2) 1/2( '

2) t/2( 2) 1/2

(~(t) x ~(t) .~(P) xr(0))
(~2)1/2( 2) (r2) 1/2

(~(t) x [~(t) xr(t)].u(0))
( 2) ( r2) t/2 ( 2) I/2

(&(t) x ~(t) (0) x [ (0) x r(0) ])
(~2) 1/2( 2) 1/2( 2) (r2) 1/2

(u(t) ~(0))
(~2) 1/2( 2) 1/2

'Reference 19.

dynamics computer simulation ' of liquid dicholro-
methane at 296 K, with use of a molar volume of
5.0x 10 6 m3/mole and a segment of 2700 time steps
for each computation. The hatched areas in Figs. 2
and 3 illustrate the "computer noise, " i.e., the differ-
ence in results between two consecutive segments.

It is clear from Fig. 1 that the auto correlation func-
tions exist in both frames of reference, whereas Figs. 2
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In this case , therefore, the components eo3 and r' i.e.
(«3(t)to3(0)) = 0 fOr all t bu
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ion so t at «1=«2=0, then Eqs. (7) and (6) become

cu3 +P3clJ3 W3 l (1 2 3) [«3 +P/«3 W3«] (1,2, 3)'
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FIG. 3. Curves 1 (solid), two segments of the moving-
frame [(1,2,3)] cross-correlation function between
r(t)

xylo(t)

and ao(0) x [co(0) xr(0)],
(r(t) x~(t) ~(0) x (~(0)xr(0)))

Curve 2 (dashed), one laboratory frame segment, which is
noise only, i.e., vanishes for all t, when averaged over a suf-
ficient number of segments. Inset: Cross-correlation func-
tion between ~(t) x r(t) and a)(0) x [a)(0) x r(0)],

(eo(t) xr(t) ~(0) x ho(0) x r(0)])
(~') "'(r') (~')

Curves 1, moving frame [(1,2,3)]; curve 2, laboratory
frame.
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