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Chaos-Order-Chaos Transitions in a Two-Dimensional Hamiltonian System
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We present a new result which shows the transitions from chaos to order and again to chaos as
the coupling parameter between two nonlinearly coupled oscillators of a Hamiltonian system is

varied continuously from —~ to + ~. By exploiting the symmetry of the system, we show that
there is no general correspondence between the classical chaotic motion and the Gaussian-
orthogonal-ensemble distributions of the energy-level fluctuations of the corresponding quantum
system.

PACS numbers: 05.45. +b, 03.65.—w

The problem of understanding the onset of chaotic
behavior in nonlinear Hamiltonian systems, where the
chaotic motion is generated by the dynamics itself and
not by external perturbation, is of considerable impor-
tance and has applications to a number of areas in sci-
ence and engineering. As in many nonlinear dissipa-
tive systems, Hamiltonian systems with at least two
degrees of freedom are known to exhibit a transition
from regular to chaotic motion as the energy of the
system is increased, as shown, for example, by the
well-studied two-dimensional Henon and Heiles sys-
tem. However, no systematic study seems to have
been undertaken which carefully examines the impor-
tant role played by the coupling parameters in a Hamil-
tonian system, without which the system would decou-
ple into one-dimensional systems which can never ex-
hibit chaotic motion. One of the novel results which
we will report in this Letter is that as a function of the
coupling parameter, the behavior of the two-
dimensional Hamiltonian system which we studied is
not simply divided by a single critical coupling parame-

ter into a regular and chaotic region, but is divided by
two critical coupling parameters into two chaotic re-
gions separated by a regular region. Another novel
feature of this Hamiltonian system is that its symmetry
properties allow us to make a definite conclusion re-
garding the statistics of the energy-level fluctuations of
its corresponding quantum mechanical system. Our
conclusion from this symmetry consideration dis-
proves arguments put forward recently in which it was
asserted that the quantum correspondence to the clas-
sical chaotic region could be associated with the
energy-level fluctuations, obeying the Gaussian-
orthogonal-ensemble (GOE) distribution, obtained
from the random matrix theory.

The Hamiltonian of the two-dimensional nonlinear
system which we have chosen for our study is

0= —,
' (p„'+ py'+ x'+ y')

+ Z (x4+ 2Cx2y'+ y4), (1)

where the x, y, p„, p~ represent the displacements and
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momenta of the two oscillators, C represents the cou-
pling parameter, and A. is a scaling parameter. The
classical dynamical equations of motion are

x+x+4A. (x3+ Cxyz) =0,
y'+y+4k. (y3+ Cx2y) = 0.

(2a)

(2b)

The corresponding quantum system is one whose
Hamiltonian operator is

1H= ——
2 t)x

t)2 +I +y
By

+A. (x +2Cx y +y ), (3)

which has arisen in problems associated with molecular
dynamics, 4 bistable lasers, and other topics.

The system first distinguishes itself by the following
property: It is a classically integrable system (quantum
mechanically separated system) at three particular
values of the coupling parameter, C =0, 1, and 3. The
first, C= 0, clearly decouples the two oscillators. The
second, C=1, reduces the system into a circularly
symmetrical one and thus decouples the radial and the
angular parts in the polar coordinates. The signifi-
cance of the third, C=3, is less apparent but can be
proved by making the following coordinate transfor-
mation. Let

x'=2 ' (x+y)
y'= 2 ' (x —y)'

then Eqs. (2) and (3) become

x + x'+ 4A. '(x'3+ C'x'y'2) = 0,

y'+ y'+ 4X'(y'3+ C'x'2y') = 0,

and

(4a)

(4b)

(Sa)

(5b)

1H= ——
2

where

ti2

Bx

a2
+X +P

t)y

+X'(x' +2C'x' y' +y' ), (6)

~'= —,
' (1+c)~,

C' = (3 —C)/(1+ C).

It follows from Eqs. (5)—(8) that C=3 corresponds to
a system of two uncoupled oscillators (C'=0) with
X'=2k. It is seen that the regime characterized by
C ) 1 in the (x,y) coordinate system can be mapped
into the regime characterized by —1 & C'~1 in the
(x',y') coordinate system.

Thus, for three particular values of C, namely 0, 1,
and 3, the behavior of the classical motion is always
regular and never chaotic, no matter what the initial

energy of the system is. This is verified by our numer-
ical studies. Quantum mechanically, the energy levels
at these particular values of C can be characterized by
the quantum numbers (n„,n~) for the uncoupled oscil-
lators, and by the quantum numbers (n, l) for the ro-
tors, and the degeneracies of the energy levels are well
known.

The questions are as follows: What about other
values of C? Would they all give chaotic motion for
any given initial energy? Is there any characteristic
level fluctuation in the corresponding quantum sys-
tem?

We have studied the problem numerically by exam-
ining, for each value of C, the following pictures of the
motion: (i) the trajectory plot of y(t) vs x(t); (ii) the
phase-space plot of x ( t) vs x ( t); (iii) the power-
spectrum plot of x(t); and (iv) the largest Lyapunov
exponent.

We have used all of the above pictures so as to be
able to identify consistently the chaotic behavior from
the regular behavior. For the ini tial conditions
x(0) = 5, y(0) =10, and x(0) =y(0) =0, the set of
trajectory plots (i) for different values of Cis shown in

Fig. 1(a); the set of phase-space plots (ii) correspond-
ing to y(0) =0 is given in of Fig. 1(b); and the
power-spectrum plot of x(t), where the horizontal
coordinate gives the frequency and the vertical coordi-
nate gives the logarithm of the absolute square of the
Fourier transform of x(t), is given in Fig. 1(c). To-
gether with the Lyapunov exponents, these plots lead
us to the clear conclusion that for the given initial con-
ditions, the behavior of the motion is chaotic for
C~ —0.21, regular for —0.21 & C & 5.2, and again
chaotic for C ~ 5.2.

Thus the motion turns from one of chaotic to regu-
lar and again to chaotic as C is continuously varied
from —~ to + ~. In the regions around the special
values of C = 0, 1, 3 for which the system is integrable,
the motion remains regular even though the equations
of motion are nonintegrable. Equations (4)—(8),
which showed that the region C & 1 can be mapped
into the region —1 & C' & 1, can be used to deduce
certain qualititave features of the chaotic and regular
regimes under different initial conditions. For exam-
ple, if it is known that under the initial conditions
x(0) = xo, y(0) =yo, x(0) =y(0) =0 the motion is
chaotic in the region C& ~ C ~ C2, then the motion
must be chaotic in the region (3 —C2/(1+ C2)~ C ~ (3 —Ct )/(1 + C~ ), given the initial condi-
tions x(0) =2 ' '(xo+yo), y(0) =2 ' '(xo —ya),
x(0) =y(0) =0. This was confirmed by our numeri-
cal results which showed the internal consistency of
our conclusions. These transformation properties are
useful when we examine the changes in the boun-
daries of the chaotic and regular regimes as the initial
conditions are changed. We will report the details of
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FIG. l. (a) The trajectory plot of y(t) (vertical axis) vs x(t) (horizontal axis). (b) The phase-space plot of x(t) (vertical
axis) vs x(t) (horizontal axis) with y(t) =0; a total of 500 points have been included in each panel. (c) The power-spectrum
plot of x(t) The corresponding values of. Care listed in the first column.



VOLUME 55, NUMBER 15 PHYSICAL REVIEW LETTERS 7 OCTOBER 1985

these studies elsewhere.
The second question concerns the quantum cor-

respondence to these classical regular and chaotic re-
gions. It is not difficult to show that our Hamiltonian
operator (3), in the region —1 & C & ~ in which the
oscillators are bounded, has the following symmetry
property: The energy levels characterized by the quan-
tum numbers (n„,n~) = (a, h) and (b, a), which are
degenerate when C =0, split into two different energy
levels when C differs from 0 if a and h are both odd or
both even integers, but remain degenerate if one of
the quantum numbers is an odd and the other is an
even integer. It follows that for any value of the cou-
pling parameter C, at least half of the energy levels of
(3) are doubly degenerate. Hence we expect that the
nearest-level distance distribution P(x) has a sharp
peak at x = 0, where x is the energy difference of the
nearest-neighbor levels. Our numerical result as
shown in Fig. 2 confirms this conclusion. This result
directly disproves the recent suggestions of Bohigas et
al. that in the classical chaotic region, the correspond-
ing quantum energy-level fluctuations obey the
Gaussian-orthogonal-ensemble distribution (GOE) .

For the GOE distribution the level fluctuations P(x)
should be zero at x=0 because of the level-repulsion
effect of random-matrix theory. Even if we put aside
the question of dependence on the initial conditions in
the classical motion, our exact symmetry argument for
the degenerate energy levels of our system and our
consistent identification of the corresponding classical
chaotic motion in certain regions of C values by
several different numerical methods clearly show that
there is no general correspondence between the GOE
distribution of the quantum level fluctuations and the
classical chaotic motion.

In summary, our studies of the nonlinear Hamiltoni-
an system (1) have revealed a novel feature of chaotic

regular chaotic transitions as the coupling
parameter is continuously varied from —~ to + ~.
When the initial energy is increased, more choatic re-
gions are found to appear. These results, together
with an exact symmetry consideration for the energy
levels of the corresponding quantum system, also
show that there is no direct correspondence between
the GOE distribution of the energy-level fluctuations
and the classical chaotic motion.
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FIG. 2. The nearest-neighbor spacing distribution of the
quantum level fluctuation for the eigenvalues of the Hamil-
tonian given by Eq. (1) with C= —0.3 and C= 10. Only
the lowest 100 levels are taken into account.
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