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We describe superconducting-quasiparticle interface states which are produced by a certain class
of local potentials at interfaces involving superconductors. These states penetrate at least a coher-
ence distance into the superconductor and arise even when the pair potential is uniform throughout
the superconductor. We specifically predict such a state at the interface between an insulating fer-
romagnet below its Curie temperature and a thin superconductor.

PACS numbers: 74.50.+r

The occurrence of quasiparticle states at energies
within the gap of a superconductor is a phenomenon
of continuing and long-standing interest in the physics
of superconductors. Such states typically appear in sit-
uations wherein the energy gap varies spatially, be-
cause of inhomogeneities' or the presence of a mag-
netic field. 2 We report here the prediction of subgap
quasiparticle states which can appear in response to a
certain class of local potentials at interfaces involving
superconductors. These states will play an important
role in the determination of the properties of materials
in which interfaces between superconductors and other
materials are involved, such as in tunnel junctions or
artificially produced superconducting multilayers.
Furthermore, these states may make it possible to
"design" the gap-region density of states via the intro-
duction of interfaces at which potentials of this class
are present.

As a specific example of a member of this class, we
discuss the local exchange-field polarization at an in-
terface between an insulating ferromagnet below its
Curie temperature and a superconductor in which the
gap does not (necessarily) vary spatially. The new
states arising from this potential are quasiparticle inter
face states because their amplitude decays exponential-
ly into the superconductor, over a length scale which is
greater than a coherence length. Their existence indi-
cates that the influence of a ferromagnetic layer on su-
perconducting quasiparticles extends at least a coher-
ence length into the superconductor.

G (x,x') = Go(x,x') +„dx"Go(x,x")V(x")G (x",x').

The spins in the ferromagnet are assumed to have a
net polarization in the plane of the interface, so that
there is no consequent magnetic induction in the neigh-
boring superconductor. Thus the exchange field acts as a
local potential, coupling spins in the ferromagnet to
quasiparticle spins in the superconductor at the inter-
face. Depending upon the sign of the exchange, this
local potential is attractive for quasiparticles of one
spin, repulsive for those of the opposite spin. In the
quasi-one-dimensional geometry of the ferromagnet/
superconductor (F/S) interface (with translational in-
variance assumed in the plane of the interface) the at-
tractive potential yields bound states (i.e., poles in the
Green's function) at an energy Eo & 0 (relative to the
Fermi energy) and beneath the energy gap (b, ) of the
bulk superconductor. A corresponding state is located
at —Eo for quasiparticles of the opposite spin.

A simple but relatively general mathematical deriva-
tion of these results now follows. Assume translation-
al invariance in the y and z directions. The equations
for the retarded Green's function then become quasi
one dimensional in character. Next, assume that the
Green's function in the absence of the perturbation of
interest, Go(x, x ), can be found (the dependence on
k~, k„and energy E is implicit in all functions here
and below). This Green's function is in general a 4x 4
matrix, 4 in order to account for particlelike and hole-
like excitations of each spin. We further consider only
single-particle perturbations. If we designate the
single-particle perturbation as V(x) (also a 4x4 ma-
trix), then the exact Green's function obeys

Finally, we assume that the perturbation is a local surface or interface perturbation, confined to the plane x =0,
with, for simplicity,

V(x")= U5(x").

The assumption of a delta-function potential is not essential, but it does greatly simplify the mathematics. We now
easily obtain

G(x» ) = Go(x x ) + Go(x 0) U~I Go(0 0) U~ Go(0,x ).
We next consider a class of perturbations, U, such that there exist projection operators P + satisfying

P+U=Z+P+, (4)

1522 1985 The American Physical Society



VOLUME 55, NUMBER 14 PHYSICAL REVIEW LETTERS 30 SEPTEMBER 1985

Z+ being proportional to the unit matrix, and the Green's functions can be decomposed into the orthogonal sub-
spaces

G = G+P++G P, Go= Go+P+G P

A wide variety of single-particie perturbations is encompassed by this class. Using the result

P iMM t=M+P+M =P+ ~ P+M '= (M+) 'P+,

where M is any 4x 4 matrix which is invertible, we find

G (x,x') = G (x,x') + G (x, 0)Z [1—G (0, 0)Z ] 'G (O,x'). (7)

Therefore, when we have

det[G +(0, 0) ' —Z+]=0 (8)

for real energy E, there exists a bound state (here, an
interface state).

Quite generally speaking, the spatial variation of
G +(x,x') in the x coordinates is governed by the

wave vectors

Now specialize to the case in which Go+ (0, 0) is the
Green s function for a semi-infinite superconductor,
occupying the half-space x & 0, evaluated at x = x' = 0
in k», k„and E space (in the notation of Maki7):

G +(0, 0) '= —i (e —hp2o-2),

where
1/2

K+= k„cos 8+ (E 6)'/— g = E/(E —g ) i 8 = gg/E. (12)

where H is the angle relative to the interface normal
and b, is the superconductor gap. For E & 0, these
wave vectors contain an imaginary part, of approxi-
mate magnitude (for most values of 8)

(6 —E)/ 2A (10)
IVF COSH lVF

where $0 is the coherence length. States contributing
to G (x,x') at E & b, must therefore decay exponen-
tially with x into the superconductor, over a length
given by the inverse of ImE+.

1 —p 1 —p2 2

Eo ——+
2 sgn

1+p 2p
(17)

det[G +(0, 0) ' —Z ]= (e —iZ ) —5 =1—2iZ

So we obtain a bound state at energy E given by

E/(~' —E')"'= (1 —Z+ )/2Z+. (15)
If Z i ——+ Z, 1 & Z & 0, then the positive-E state is
associated with the upper sign, the negative-E state
with the lower sign.

If the interface at x =0 contains polarized spins
which are coupled via a local exchange interaction (J)
to superconducting quasiparticles, then U is a local
proper self-energy, given by an expansion in powers of
J. If we keep only the term which is linear in J, then

U =pp3a3, (16)
where p is equal to J, divided by the Fermi energy,
times the average value of the z component of spin in
the ferromagnet. The projection operators for this
case are P+ = —,

' (1 + p3a3). Thus Z ~ ——+ p, and the
interface states are found at

The matrices o-& are the usual Pauli matrices, while the
4 && 4 matrices pi are, for example,

0 —il I 0
iI 0 ' P3 0 —I ' (13)

where I is the 2x2 identity matrix. The product pjo-„
is interpreted as the direct product. For notational
convenience, we have normalized Go by a factor of
2/tuF cos8, with a corresponding normalization under-
stood for Z+.

Using this function, and assuming that U is not pro-
portional to p2o-2, we find for (8)

+e —Z2+ =0. (14)

I

located symmetrically about the Fermi energy (E = 0),
within the gap of the superconductor. If we keep
terms of second order in J, then the pole in the
Green's function becomes a resonance at Eo, with
width governed by the magnitude of the second-order
term.

A potentially serious deficiency is the neglect of spa-
tial variation in the gap function as a result of pair
breaking at the interface. This would cause the gap to
be depressed at the F/S interface. A bound state due
to Andreev scatterings must then form in this pair-
potential depression, potentially masking the
polarization-induced interface state. The pair-potential
depression may be avoided experimentally by making
the superconductor thin compared to a coherence
length. The average gap 6 would then be approxi-
mately constant, lower than the bulk value, and Eo
would be located at a fraction of this gap, according to
Eq. (17).
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Tunneling is an ideal probe of this interface state,
because it directly reflects the density of states for
quasiparticles propagating nearly normal to the inter-
face. The analogous tunneling observation of bound
states in a pair-potential well (formed by interfaces
between a strong- and a weak-coupling superconduc-
tor) was first reported by Rowell and McMillan. 9 In
the situation of interest here, the ferromagnetic insula-
tor acts as a tunneling barrier itself. Of course, one
must assume that a thin ferromagnetic layer can exhi-
bit a net polarization, and that spin-spin interactions at
the interface in this layer are not profoundly affected
by the proximate superconductor. There is strong evi-
dence that these conditions have been achieved by
Stageberg et a/. ' in a recent experiment. We shall
presently discuss the relevance of our results to this
experiment.

In Fig. 1 we display the calculated quasiparticle den-
sity of states at the F/S interface for a superconductor
with a gap of 1.4 meV, a polarization parameter at the
interface, p, equal to —0.23, an elastic magnetic
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scattering rate equal to 8.0 && 10 EF//f (EF is the Fer-
mi energy), and negligible nonmagnetic interface
scattering. For comparison the BCS density of states is
also shown as a dashed line. Note that the divergence
at the energy gap remains, but that states are less
dense above the gap than in the BCS case. Evidently,
the interface state removes density from regions above
the gap, while maintaining the divergence at the gap.
The inset in Fig. 1 displays the same density of states
averaged over a Gaussian distribution of energies, the
Gaussian of width 0.03 meV. This is an approximate
way of accounting for a distribution of polarizations, p,
over the interfacial area.

In Fig. 2 we display the J-V curve and its derivative
(the normalized differential conductance) for a
superconductor/insulating ferromagnet/superconduc-
tor tunnel junction. The curve is obtained by numeri-
cal integration of

f gV
I ( V) = J dE N (E)N (E —e V), (1&)

where N (E) is the density of states in the inset of Fig.
1, V is the voltage, and e the electronic charge. Be-
cause N(E) is the density of states for both spins, we
have implicitly assumed the existence of domains, so
that there is no unique spin-up or -down direction. If
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FIG. 1. Total quasiparticle density of states vs energy at
an insulating ferromagnet/superconductor interface for a su-
perconductor gap of 1.4 meV, polarization parameter
p = —0.23, and elastic magnetic scattering rate of
8x10 5EF/A. The bound-state peak occurs at 1.26 meV for
one spin. The dashed line is the BCS density of states. The
inset is the density of states averaged over a Gaussian of
width 0.03 meV, to simulate a distribution of polarizations.
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FIG. 2. Lower curve: Current vs voltage obtained with
use of density of states from inset of Fig. 1. Upper curve:
Derivative of current-vs-voltage curve. The peaks in the
upper curve are located at 2.48, 2.64, and 2.8 mV.

1524



VOLUME 55) NUMBER 14 PHYSICAL REVIEW LETTERS 30 SEPTEMBER 1985

there were such a unique direction, tunneling would
not be allowed between the interface states on opposite
sides of the Fermi level, because these states have op-
posite spins. Note the dramatic three-peak structure in
the derivative curve. If the spin selection rule were
operative, there would be only two peaks.

The three-peak structure has been observed by
Stageberg et al. 'o in a junction consisting of Pb and
Ho(OH)3, a ferromagnet with a Curie temperature of
about2 K." As noted in Ref. 10, the three-peak struc-
ture can arise from the formation of a quasiparticle
bound state in the depression of the Pb pair potential
created by the magnetic material at the interface. Such
a state can occur in this experiment because both Pb
layers are thick compared to the coherence length of
Pb, so that spatial variations are not suppressed as they
would be in thin Pb layers.

Yet there are certain qualitative features of the ex-
perimental result which cannot be explained solely by
the formation of an Andreev bound state in a pair-
potential depression at the interface. First, theoretical-
ly the spectral density in the Andreev bound state
should dominate over that at the gap edge, because
such a bound state removes the divergence at the gap
edge. Experimentally, however, the peak in the vi-
cinity of the gap edge remains dominant over the
lower-energy peak. Further, theoretically there should
be a depression in the normalized differential conduc-
tance at twice the gap. Experimentally, there is a
depression, but it is located above the energy 2A. In
Figs. 1 and 2, one notes that these two qualitative ex-
perimental observations apparently agree with the in-
terface state model. An unambiguous observation of
the interface state could be achieved if the two Pb
layers were less than a coherence length thick. Then,
perhaps, theory and experiment could be compared in
detail, and relevant parameters extracted.

Measurement of the infrared absorption of a thin
layer of Pb on an insulating magnetic substrate should
also reveal the interface state, because this state influ-
ences the superconductor over a length scale at least as
large as a coherence length. We predict an aborption

which, in the threshold region, resembles the I-V
curve in Fig. 2, exhibiting thresholds at energies 2Eo,
Eo+b, and 24.

In conclusion, we have demonstrated that local
single-particle potentials of a certain class can produce
quasiparticle bound states at interfaces involving su-
perconductors. We have presented a specific example,
that of the FlS interface, to illustrate a member of this
class which has not previously been considered. Some
evidence has been given that the tunneling experiment
of Stageberg et al. ' provides an example of this
phenomenon. We predict that such states will also be
observable in the infrared absorption by a thin super-
conductor on an insulating magnetic substrate.
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