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The first ab initio theory of structure-independent interatomic potentials in d-electron transition
metals has been developed from a multi-ion expansion of the total energy within the density-
functional formalism. Explicit results for the volume term and two-ion and three-ion potentials
entering this expansion have been obtained and successfully tested for 3d-series metals.

of rigorously transferable interatomic forces and po-
tentials in transition metals capable of dealing with the
full spectrum of structural, thermal, and mechanical
properties of both the solid and the liquid state, as has
been possible for nontransition metals with use of
pseudopotential perturbation techniques. 5 6 In this
Letter, I wish to present the first such theory.

%e consider a homogeneous, elemental metal with a
well-defined atomic volume 0 and seek to develop the
total energy of the system as a multi-ion expansion in
terms of the individual ion coordinates R, :

(RIJ,R~k, Rk; ) +. . . .

l

is strong, all interatomic matrix elements are small, and
an expansion like (1) is meaningful.

The quantities needed to obtain E„„namely, the to-
tal electron density n (r) and sum of one-electron en-
ergies E,„„are formally accessible through coupled
Green's-function equations in a ~k), ~@d) representa-
tion. The present approach then represents the
partially-filled-d-band limit of the generalized pseudo-
potential theory (GPT), which I have previously
developed for empty- and filled-d-band metals. In
the present case, n (r) consists of a uniform density
Z/Q, where Z is an effective sp valence, inner-core
and d-state electron densities for each ion n;, and nd,
respectively, and a small oscillatory density Sn„l. The
valence Z and the number of d electrons per atom,
Zd=j nd(r)d r, are self-consistently linked by the
equations Z + Zd ——const, Zq = (10/m) 52(eF), and
eF ——(t2/2m)(3m2Z/Q)2l3, where the l = 2 phase shift
is 52(E) = —1m{In[Ed —E+I d~(E))}, with I dd(E)
the d-state self-energy. ~ Keeping only the one-ion,
linear-response contribution to Sn„& leads to a good
description of the electron density with an appropriate
choice of ~@d) . For example, in agreement with
muffin-tin band theory, I find Z =1.5 across the
entire 3d series from Ca to Cu, with both the trend
and magnitude of n (r) well reproduced.

The quantity E,„, is obtained in the desired form
through a simultaneous expansion in ~ and the rela-
tive d-state coupling strength

PACS numbers: 71.45.Nt, 34.15.+n, 61.55.Fe, 63.20.Dj

Over the past ten years, there has been a great deal
of progress in the understanding of the energetics of
d-electron transition metals from first principles, espe-
cially within the theoretical framework of the Kohn-
Sham density-functional formalism. ' With nonpertur-
bative band-structure techniques, it has been possible
to investigate basic properties of 3d and 4d elements
such as cohesion, structural phase stability, 3 and
high-symmetry phonons with only the atomic number
and atomic mass as input. Heretofore, however, there
has been lacking a corresponding first-principles theory

E...(R, , . . . , R )=E,(n)+ —,
' X ~,(R,,)+ —,

' X ~,
E,j i,j,k

Here Eo is a volume term and v2, v3, etc. are two-ion,
three-ion, etc. , interatomic potentials which are impli-
citly volume dependent, but explicitly structure in-
dependent, that is, they depend only on relative ion
separations R,J ——~R, —R&~, etc. , and are thus com-
pletely transferable at fixed volume. In contrast, ap-
proaches which arbitrarily force the total energy into
pair-potential form (i.e., Eo= F3=0, etc.) by inverting
band calculations of E„, as a function of volume pro-
duce inherently structure-dependent potentials lacking
such transferability. 7

The starting point for this theory is the usual Kohn-
Sham self-consistent-field equations within the local-
density approximation to exchange and correlation. '
Working in a basis of plane waves ~k) and localized,
atomiclike d states ~Pz), we describe the transition-
metal valence s and p bands by a free-electron energy
e» and pseudopotential matrix elements (k'

~ w
~ k), the

d bands by a mean energy Ed and near-neighbor over-
laps Sdd, (R&) = (@d~@~~,) and Add, (Ry) = (gd I~I@~~ ),
and the hybridization between them by the couplings
(k(gd) and (k(4[$d) . Here b. = 5 V —(@d (5 V(@d),
with 5V =Ho —H and Hp~@d) =Ed~pd), where H is
the metal Hamiltonian and Ho is an appropriate refer-
ence Hamiltonian6 which defines ~@d) . The key
feature of this representation is that ~ and 6 are both
effectively weak potentials, corresponding in the elec-
tronic structure to small sp band gaps and narrow d
bands, so that while the intra atomic d-stat-e scattering

(E„E)S„,, (R,, ) —a„—, (R„.) + I „,(R,, E)
(2)
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where I,(RO,E) is a long-range hybridization interaction between sites i and j which reduces to I"dd(E) for
R,&

=0, so that re(O, E) = 1. In addition, It „,i ( 1 for all R;J of interest and r, 0 as R;J ~. The calculation
of the d-state contribution to E,„,proceeds by our considering the limit of large R,&, expanding all quantities in
powers of t„„and then collecting terms with a common structural dependence and resumming them to continue
the result analytically to arbitrary R;i. The two-ion d-state component of E,„,is thereby found to be

(2/n ) Im „ ln (1—TJ TJ; )dE; (3)

the three-ion component is
F

(2/n )Im Iln[1 —( Ti TJ, + Tik T„i + Tk; Tk ) + TJ T k Tk; + T,k Tk T, ]

(4)

and four-ion and higher components are given similar-
ly. In Eqs. (3) and (4), Ti is the 5 x 5 matrix with ele-
ments t„d, coupling sites I and j, and the trace of all

matrix products is understood. Combining these
results with remaining pseudopotential, electrostatic,
and exchange-correlation contributions then yields the
desired expansion (1).

The behavior of the resulting two-ion potentials v2
across the 3d series is illustrated in Fig. 1(a). At the
beginning of the series (Ca), the d-state contribution
(3) is weakly attractive, yielding a potential qualitative-
ly similar to that for a simple metal. As one moves to
the right in the series, Eq. (3) becomes increasingly at-
tractive, representing the bonding nature of partially
filled d bands. This results in a deep first minimum in

v2, the depth of which becomes maximized near the
center of the series (V, Cr) and then recedes as one
moves further to the right. At the end of the series
(Cu), Eq. (3) actually becomes positive, representing
the extra kinetic energy of nearly full, overlapping d
shells, and a repulsive potential results. The corre-
sponding three-ion potential v3 is dominated by d-
electron contributions and is everywhere approximated
by Eq. (4) alone. In Ca and Cu we find v3 to be negli-
gible, but in V and Cr, v3 is significantly repulsive for
near-neighbor interactions, with a strong angular
dependence, as shown in Fig. 1(b) for V. Both v2 and

Q3 possess long-range hybridization tails, which require
special treatment in real-space calculations. Physically,
I expect these tails to be damped by the higher multi-
ion interactions because of the nonspherical nature of
transition-metal Fermi surfaces, but considerable fur-
ther study of this question is needed. For the present,
I have developed effective practical schemes to deal
with this complication. '

I have tested the functionals Ep, U2, and v3 in calcu-
lations of cohesion, structural phase stability, and pho-
nons across the 3d series in the nonmagnetic limit.
The cohesive energy E„h obtained at the pair-potentia1
level, by omission of v3, is plotted in Fig. 2(a) and
compared against muffin-tin band-theory results. 2 The
trends are given correctly, as are the magnitudes ex-
cept near the left center of the series (Ti, V, and Cr),
~here E„h is overestimated. This picture is confirmed
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FIG. 1. (a) Radial dependence of v2 for 31-series metals.
(b) Angular dependence of v3 for near-neighbor interactions
in V. Here R, is the atomic-sphere radius; the number and
location of two-ion neighbors and three-ion triangles in fcc
and bcc structures is indicated.
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FIG. 3. Calculated bcc-fcc energy difference across the 3d
series from GPT two-ion potentials and from muffin-tin
band theory (Ref. 3).
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FIG. 2. Cohesive energy for 3d-series metals. (a) Magni-
tude of GPT two-ion results compared with muffin-tin band
theory (Ref. 2). (b) Volume dependence of E„h for V with
and without v3.

1.2

when the volume dependence of E„h is studied. In
Cu, for example, excellent results are obtained at the
pair-potential level for both the equilibrium atomic
volume Ao and the bulk modulus. In V, on the other
hand, E„h continues to grow in magnitude as the
volume is reduced, as shown in Fig. 2(b). In this case,
however, the addition of the three-ion contribution is
sufficient to reverse the trend and produce good
values for both E„h and Ao, as also shown in Fig.
2(b). The big impact of v3 here comes not simply
from its magnitude [which is actually much smaller
than that of v2 (see Fig. I)] but from the fact that a
large number of triangular interactions add construc-
tively.

The dominant structural trend in transition metals is

TABLE I. Structural energy differences for V and Cu in
millirydbergs.

Muffin-tin
band theory' GPT Experiment'

V
Cu

—20.6
1.1

+2.7
0.8

bcc-fcc

hcp-fcc

—9.2
3.6

—1.3
0.5

—6.9
4.8

—2.1

0.5

'Reference 3.
"Optimum representation, Refs. 9 and 10.
'Estimates of L. Kaufman and H. Bernstein, Computer Calcufation

ofPhase Diagrams (Academic, New York, 1970).

the appearance of the bcc structure near the center of
each series and close-packed structures on either side.
This has long been recognized to be a density-of-states
effect and is semiquantitatively accounted for in the
most complete muffin-tin energy-band calculations.
Qualitatively at least, this trend is also predicted by the
present pair potentials, as i11ustrated in Fig. 3,
although the calculated energy differences are too
large. In this case, however, the basic trend is estab-
lished by near-neighbor interactions and most of the
quantitative overestimate is an artifact of the long-
range tails of v2. Damping of these tails' brings the
GPT energies much more in line with the band calcu-
lations, and, if one further adds three-ion contribu-
tions, leads to good results for both the bcc-fcc and
hcp-fcc energy differences when compared with exper-
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dominated by the strong repulsive second-shell forces
provided by v3. The further inclusion of four-ion
forces and calculations on the 4d series of metals are in
progress. These results together with a full elaboration
of the theory will be published at a later time.

The author wishes to thank Dr. H. L. Skriver for
kindly providing tables of the results cited from Ref. 3.
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FIG. 4. Longitudinal (L) and transverse (T) [100] pho-
nons in V. GPT results are for an optimum representation
(Refs. 9 and 10). Experimental results are from Ref. 12
(points, data for L branch; solid lines, fit to the average of
several sets of data).

iment, as demonstrated in Table I for V and Cu.
Perhaps the most demanding test of the present in-

teratomic potentials comes in the calculation of the
phonon spectrum. In the fcc metals Ca and Cu, indi-
vidual phonons are calculated at the pair-potential lev-
el to about 10% accuracy, but the real challenge comes
for the bcc metals V and Cr. These latter metals (to-
gether with their 4d counterparts Nb and Mo) are well
known for anomalous phonon spectra, and semiempir-
ical tight-binding calculations" in the 3d series suggest
that these are driven by multi-ion interactions. Our
results confirm this. At the pair-potential level, the
magnitudes of zone-boundary phonons are given rath-
er well, but the shapes of the branches show none of
the observed anomalous behavior and furthermore
display incorrect ordering and instabilities at small
wave number, as shown in Fig. 4 for V. The inclusion
of three-ion forces, however, immediately remedies
this situation in V and Cr. This is particularly so for
the longitudinal [100] branch, which is pushed well
above the transverse branch by v3, with a midzone
peak, and for V, a dip towards the outer portion of the
zone, in agreement with experiment as also illustrated
in Fig. 4. Analysis of this behavior reveals that it is
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