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Using the new concept of survival probability we generalize the Flory approach to compute the
second independent exponent in polymer statistics with excluded volume. %e obtain y = 3 —dv,
and for the 9 point, y~=2(2 —v~d). These results bring to completion the mean-field theory for
the exponents of polymer statistics.
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The Flory approach is a very successful method for
the calculation of the exponent t in polymer statistics
with excluded volume. ' This exponent relates the
mean end-to-end distance R to the number of mono-
mers N: R —N". The self-consistent approach of Flo-
ry gives uF = 3/(d + 2), where d is the space dimen-
sion. This result produces the correct critical dimen-
sion d, = 4 and also gives extremely good values for u

at lower dimensions. For d =2, vF= 4 is considered
to be the exact value while for d = 3, vF ———', overesti-
mates the best numerical values by about 2'/0. 3 Even
after de Gennes has shown that the self-repelling chain
(SRC) problem (also called the self-avoiding walk) be-
longs to the class of problems known as critical
phenomena, ' several questions remain open about the
origin of the striking success of the simple Flory
scheme for such a complex problem. This situation is
unique because no other critical exponent can be ap-
proached successfully with similar methods. In partic-
ular, considering the SRC as a critical problem there
are actually two independent exponents, while the Flo-
ry approach only gives I . In this Letter we formulate a
generalized Flory approach for the enhancement factor
of polymer statistics from which an expression for the
second independent exponent y can be derived. The
approach is inspired by the new concepts recently in-
troduced in kinetic walk problems5 and polymer statis-
tics.6 7 We obtain y=3 —dt, and for the 8 point,
ya = 2(2 —vad ). These results provide the first com-
plete picture for the exponents of the SRC in terms of
a self-consistent Flory approach. Their validity and
their implications with respect to the approximations
involved in self-consistent methods for critical
phenomena will be briefly discussed.

The total number of self-repelling chains of N steps
has the asymptotic form (at large N)'

The term z represents the "effective" number of

available neighbors at each step. The factor N~ ' is
called the enhancement factor and represents a correc-
tion to the leading term z . The interesting feature
about this correction term is that its behavior is
governed by the universal exponent y ~1 while the
term z in the leading factor is not universal.

In the following we are going to describe Eq. (1) in
terms of the survival probability of random walks.
This means that we consider all the possible unrestrict-
ed random walks of N steps and then we select only
those that do not contain any self-intersection. 6 The
total number of random walks of N steps is (in a lattice
with coordination z) z~. The survival probability for a
walk of N steps is then

S = (I/z~)Z = (z/z)~N" (2)

%ithin the assumption of a single relevant scaling
length R —N", the probability distribution for the
end-to-end distance r of a generalized random walk
can be written, with the use of standard notations, as'

(4)

and

lim f't(x) =xg.
x~0

Consider a walk that has survived N steps; the pro-
bability to be trapped at the next step is given by the
product of the probability to encounter another portion
of the walk and the conditional probability that this en-
counter leads to a trap. For scaling properties only the
encounter probability is of relevance; the other term
plays essentially the role of an irrelevant prefactor.
The probability that addition of one step to a walk that

The exponent g is linked to y and v by the des
Cloiseaux relation'
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Pg(r = 1) = (1/R )f~(1/R ), R = N", (7)

and since 1/R « 1, we can use the asymptotic ex-
pression of Eq. (5) to obtain

has survived N steps leads to an encounter with a por-
tion of the walk that is distant exactly N steps
(1 ~ N ~ N) from the tip is given by the probability
to return to the origin for a reduced walk of N steps.
From Eq. (3) this probability is

this gives

x(n) = I+~p(n)/[I —p(~)].
Equation (13) can then be written as

SN —— 1 —P x n
n=1

=(1—p( )) fl x(n), (16)

Ap(N) =„ dNP (1)=N-
N (12)

The physical meaning of these two terms is the follow-
ing: The term p(~) refers to the encounter probabili-
ty for a walk of infinite length, while b,rf (N) gives the
correction dtte to the fact that the length of the walk is ac
tually N. We are going to see in the following how the
enhancement factor is directly linked to this correc-
tion.

We now follow a walk from its start n =1 until it
reaches n = N and compute its total survival probabili-
ty. At a given length n the encounter (and trapping)
probability is of order p (n) so that the survival proba-
bility is 1 —p(n). The total survival probability Sz is
then the product of all these terms:

PN(1) = N (8)

The probability p(N) to encounter some portion of
the walk, no matter at what distance N from the tip, is
then given by the sum of Pg (1) over all the possible
values of N:

u(X) = f )'x()) =„, dNPx())
N=1

[ N —v(d+g) +1]N (9)
where the minus sign as the prefactor of the right-
hand side is due to the fact that —v(d +g ) + 1 & 0.
We can check at the end that this is consistent with the
results obtained.

We can rewrite Eq. (9) in the more convenient form

p(N) =p( ) —~p(N),

where

p( )=)1 dNP-(1)

is an asymptotic encounter probability of order of uni-
ty, and

and in the limit N )) 1 we have

S =e-~&-» (17)

By comparing Eq. (17) with Eq. (2) we can make
the identification

fx = fl x(x) = (("
n=1

(19)

corresponds to the enhancement of the survival proba-
bility due to the fact that the chain is actually finite at
each step. The requirement that f& behaves asymptot-
ically as a power law implies that

"f~/"N = (I/N)~~ =f)v+i
and from Eq. (19) we have

fig+1 f& fjv[x(N+1)
/)), p (N + 1) (21)

This implies the scaling condition

Ap(N) —N

which together with Eq. (12) leads to the relation

v(d+g) =2,

(22)

(23)

which corresponds to g = n/v, where n is the charac-
teristic exponent of closed self-avoiding loops. ' By us-
ing the des Cloiseaux relation [Eq. (6)] we can rewrite
Eq. (23) as

p ((x) ) = ln(z/z ),

which enlightens the asymptotic meaning of z. The
use of the same z at each step corresponds to the "ef-
fective" number of available sites for an infinite chain.
The term

S„= II [1—p(n)]
n =1

= ll [1—p( )+~@(n)l.
n=1

It is convenient to introduce x (n ) such that

[I —p(~) lx(n) = [1—p(~) +&p(n) l; (14)

+=3 dvg (24)

g„= (4 —d)/3, (25)

which is our main result. We first note that this ex-
pression shows the correct behavior at the critical
dimension. In fact for d =d, =4 and v= —,', Eq. (24)
gives y = 1. For lower dimensions we can use v = vF
= 3/(2+d) to obtain
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and

yF ——2vF ——6/(2+ d ). (26) (33)

p (N ) instead of p (N ) . This changes Eq. (30) into

df~/dN = p (N )

We can see that for d = 3 these expressions give ex-
tremely good values: gF(d =3) = —,

' corresponds to
the best numerical estimates' and y„(d =3) = 1.2 is
about 3'/o larger than the best numerical estimates. '

The situation is not as good for d = 2 because
yF(d =2) =1.5 is about 10'/o larger than the conjec-
tured exact value y= —",, . From the point of view of
critical phenomena we note that Eq. (26) corresponds
to q = 0, where q is the correlation-function ex-
ponent. ' This fact may help in clarifying the limits of
self-consistent approaches for critical phenomena, a
point that we intend to discuss in more detail else-
where. '

The previous concepts can be used also to derive y~

corresponding to the 0 point. To this purpose it is use-
ful first to rederive Eq. (24) with the explicit use of
the coil density p (N ):

p(N) = Nl y = Ng -'= N' (27)

Given a walk that has survived N steps we make AN
more steps. We assume that in each step the correc-
tion for using p (~) instead of p (N) is of the order of
p(N). 9 This gives for the enhancement factor

fjv + a jv = fjv [1+p (N ) 1 = fjv [1 + p (N )AN ] (28)

and

and therefore

2(N) (34)

This relation leads to

y'= 2(2 —v'd ). (3S)

Also here we obtain the correct behavior at the critical
dimensionality which for the 0 point is d, = 3:
y (d = 3) = 1. For d =2 and for vF(d =2) = —,

' we ob-
tain ya(d =2) = —,

'
which, in view of the discussion

following Eq. (26), should be considered as an upper
limit for the real value. This is true because also in
this case our relation corresponds to q =0.

In summary, we have shown that the concept of sur-
vival probability allows one to frame a Flory approach
to the enhancement factor, bringing to completion the
mean-field picture for the exponents of polymer statis-
tics. This will hopefully enlighten the roots of these
types of approximation also with respect to their appli-
cations to other physical phenomena.
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Afjv = (df~/dN )AN = p (N )AN,

so that

dfjv/dN = p (N ) . (30)

This relation can be used in two ways: (a) From Eqs.
(20) and (21) we have

&fg/dN =fjvAp(N) =p(N). (31)

de/dN = N~ (32)

which, when used in Eq. (30), gives us back y = 3 —d.
At the 0 point the effect of first-order encounters is

exactly canceled by the attractive interaction. The "ef-
fective" encounter probability is then proportional to

Using fjv =N~ ', Ap(N) =N " + +', and p(N)= N' "d, we recover the des Cloiseaux relation
g = (y —1)/v. (b) From Eq. (19) we also have
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The first-order trapping probability is of the order of p as

discussed in Ref. 6. The assumption here is that the correc-
tion term is related to a fraction of this probability, and so it
is still of order p. At the 0 point the situation is analogous
with respect to the second-order trapping probability that is
of the order of p .
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