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Fractal Basin Boundaries and Homoclinic Orbits for Periodic Motion
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A fractal-looking basin boundary for forced periodic motions of a particle in a two-well potential
is observed in numerical simulation. The fractal structure seems to be correlated with the appear-
ance of homoclinic orbits in the Poincare map as calculated by Holmes using the method of Melni-
kov. Below this critical forcing amplitude the basin boundary appears to be smooth and nonfractal.
This example raises questions about predictability in nonchaotic dynamics of nonlinear systems.

PACS numbers: 03.20.+ i, 05.40.+j, 46.30.—i

In a series of papers and reports, Yorke and co-
workers' ' presented numerical evidence for fractal
boundaries between basins of attraction for nonchaotic
attractors. In their study they looked at two-
dimensional maps with multiple nonchaotic attractors.
In a recent lecture, Yorke suggested that equations
representing flows of dynamical systems with multiple
nonchaotic attractors, i.e. , equilibrium points, limit cy-
cles, periodic orbits, etc. , might possess fractal boun-
daries between the two or more basins of attraction.
This would imply that for small uncertainty in the ini-
tial conditions near this boundary absolute predictabili-
ty might be impossible even if a solution is proved to
exist and is unique. In a recent Letter4 fractal basin
boundaries have in fact been found for the forced pen-
dulum.

In this Letter we have applied these ideas to the
problem of forced motions of a particle in a two-well
potential, and relate the appearance of fractal basin
boundaries to the appearance of homoclinic orbits in
the Poincare map as examined by Holmes5 in an ear-
lier study. The two-well potential describes the motion
of a buckled elastic beam or an electron in a plasma. s 8

The governing equation under study is

x +yx ——,
' x (1—x ) =f cos~t. (1)

The importance of this model is that the chaotic and
nonchaotic dynamics have been analyzed in great de-
tail by Holmes as well as by numerical simulation and
by analog computer. The results of this work have
been verified in experiments by Moon for a buckled
elastic beam. Because of the close agreement between
theory, experiment, and numerical simulation, we
have confidence that the numerical results presented
in this paper reflect the actual properties of the dynam-
ical system (1) and the physical systems it claims to
model.

In his theoretical study of (1), Holmes used the
method of Melnikov to derive a necessary criterion for
chaotic motion based on the existence of homoclinic
orbits in the Poincare map when f ) f„where

f, = (y/2/3+co)cosh(vrto/ J2). (2)

This criterion gives the condition for the intersection
of stable and unstable manifolds associated with the
saddle point of the Poincare map (tot = 2m n; n is an
integer) .

It is the thesis of this paper that this criterion is a
necessary condition for the appearance of fractal basin
boundaries between two periodic attractors and that
unpredictability in the presence of uncertainties in ini-
tial conditions may be a property of the two-well po-
tential even when the attractors are not chaotic.

Experiments on the forced motion of a buckled
beam have shown that below some critical f = f,'—
(f,') f, ) the motion is periodic and above f,' the
motion may be chaotic. Fractal properties of the
boundary between periodic and chaotic motions for
this equation have recently been studied experimental-
ly, 7 and the fractal dimension of the Duffing-Holmes
attractor has recently been calculated by the authors.

For the frequency to =0.833 and damping y =0.15
this equation shows chaotic behavior for f«0.159
when a fourth-order Runge-Kutta numerical integra-
tion is used while the critical Holmes value from (2) is
f, =0.088. In the present study we looked at the non
chaotic regime 0.05 & f'& 0.1. For long times, only
periodic motions are possible, an orbit about the right
or the left equilibrium position x= +1, x=0. We
then explored the initial-condition space (xp, xp 1Jp)
to find the basin of attraction of these two attractors.

The criterion used to determine the long-term state
of the orbit was first to ignore the initial transient,
equivalent to five driving periods, and then wait until
the trajectory has made five orbits about either the left
or the right equilibrium position x = + 1 by looking at
the long-time average of x (t). If the orbit went to the
right attractor we plotted a symbol; if it went to the left
attractor we left a blank. In this way the edge of the
dark symbols represents the basic boundary.

The numerical results are plotted in Figs. 1—5. For
low values of f (t0=0.833), f—0.05, the boundary
looks smooth as shown in Fig. 1. However, for f
=0.1, which is greater than the Holmes critical value
of 0.088, the coarse-scale boundary shows some
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FIG. 1. Smooth basin boundary (solid lines) for periodic
motion about equilibrium points x = + 1, x = 0 (dotted line)
for forcing amplitude f = 0.05 and frequency Oi = 0.833
(damping y = 0.15).

fingers or whiskers indicating possible fractal behavior
as shown in Fig. 2 for 400X400 initial conditions. To
confirm this we performed a sequence of successive
enlargements of smaller and smaller regions of phase
space near the suspected fractal boundary as shown in
Fig. 3. Each enlargement consisted of 104 initial con-
ditions (100&&100) and each showed finer and finer
structure indicating a possible fractal boundary. A
composite photograph with 400&400 initial conditions
is shown in Fig. 3.

All of the numerical results were obtained with use
of a VAX 750 computer. Most of the data were run
with a Runge-Kutta solver with a step size of 0.25.
However, the data in Fig. 2 were also run with a 0.1

step size and the results were almost identical. Fur-
ther, a dozen or more individual points from Fig. 2
were selected at random near the fractal-looking boun-
dary and run for a long time to make sure that the cri-
terion for left or right periodic attractor was operating
correctly. In all cases the long-time orbits were period-
ic. Most were period-one orbits, but a few were period
three as judged by use of Poincare maps.

In a paper on the forced Duffing equation (1),
Holmes showed that the chaotic motions were preced-
ed by the appearance of an infinite set of homoclinic
orbits in the Poincare map of the periodically forced
system for a critical value of the forcing amplitude f.
These orbits occurred when the unstable and stable
manifolds, emanating from the saddle point at the ori-
gin, intersected.

For low damping, however, y ( 0.2, the first author
has shown6 in experiments on vibrations of a buckled
elastic beam that the condition (2) was only a neces-
sary one for chaotic vibrations of a buckled beam (i.e. ,
f,' & f,'"). Thus there lies a region in the parameter
space (f, t0, y) where homoclinic orbits exist but chaos
is not likely (i.e. , for f, & f & f,'). We conjecture
that Holmes's criterion (2) may give the critical value
of "f"for a fractal basin boundary between two non-
chaotic periodic attractors about the left or right
equilibrium points.

First, this conjecture is supported by the data in Fig.
4. Here the results of Runge-Kutta simulation are
compared with the Holmes criterion (2). The circles
indicate that smooth, nonfractal looking boundaries
were obtained similar to Fig. 1. The star data points
indicate the appearance of a nonsmooth boundary. Be-
cause of the costs and computer time involved only
one frequency (co=0.833) was explored on a finer
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FIG. 2. Fractal-looking basin boundary for forcing ampli-
tude f=0.1 (~=0.833, y = 0.15) calculated from 160&&103
initial conditions in the domain —2.4 ~ xo ~ 2.4,
—1.2 ~ vo~ 1.2.
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FIG. 3. Composite photograph of finer scale enlargement
of Fig. 2 basin boundary for 160&10 initial conditions,f=0.1, co =0.833, @=0.15, —0.375 ~xo~ —0.275, 0.045~ v0~0 075
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FIG. 4. Comparison of the Holmes criterion for homo-
clinic orbits with numerical evidence for smooth and
nonsmooth basic boundaries. The lower bound of the
chaotic region is shown by the dashed curve.

scale to ascertain the self-similar, fractal nature of the
boundary. The dashed line represents a 1ower bound
on the chaos criterion.

Second, there is numerical evidence that the appear-
ance of fractal-looking structure in the basin boundary
is coincident with the intersection of stable and un-
stable manifolds of the Poincare map as shown in Fig.
S. When f (f„one can argue that the stable mani-
fold of the Poincare map and the basin boundary are
coincident. [This conclusion was also found for an ap-
proximate two-dimensional cubic map associated with
(1) by Yamaguchi and Mishima. ] Using Holmes's
results we show in Fig. 5 the saddle point of the Poin-
care map calculated from (1). It is evident from Fig. 5
that at the Holmes criterion, the stable manifold
develops a fold or finger which touches the unstable
manifold shown as a dotted curve. Thus it appears
that the criterion for homoclinic orbits in the forced
two-well potential problem is coincident with the
change from a smooth to an irregular and perhaps frac-
tal basin boundary.

Yorke and co-workers have shown that the fraction
@ of uncertain initial conditions in the phase space as a
function of the radius of the sphere of uncertainty e in
initial conditions has the following relation:

D —d

where D is the dimension of the phase space and d is
the fractal dimension of the basin boundary. For ex-
ample, for d = 1.5, an uncertainty in initial conditions
of &=0.01 (compared to order one) yields an uncer-
tainty fraction of 10%. For + =0.05, @=22%.

Fractal properties of chaotic motions have been of

FIG. 5. Stable and unstable manifolds of the Poincare
map superimposed on the basin boundary for forcing ampli-
tude at the Holmes critical value (f' = 0.0856, cu = 0.8,
~ = o.is).

course the subject of great interest in the past decade.
Such behavior is associated with a sensitivity to initial
conditions and a loss of information about the motion
as time proceeds. The importance of the conjectures
of Yorke and co-workers is that a larger class of non-
linear phenomena may suffer from inherent unpredic-
tability than was previously thought. This includes
transient and periodic as well as chaotic problems.
This discovery is ironic in the age of the supercomput-
er in which numerical simulation through finite-
element, finite-difference, and other CADiCAM
software promises to increase our analysis and predic-
tion capability of the physical world.

A sensitivity of numerical simulation predictions of
nonlinear phenomena has been known anecdotally in
the numerical prediction industry. Recently a study by
Symonds'0 has appeared in the literature which is
somewhat related to the problem in this paper. There
he tried to predict the end-state behavior of the tran-
sient excitation of an elastic-plastic beam arch. The
end states involve periodic oscillations about two pos-
sible buckled positions of the beam arch. Thirteen dif-
ferent investigators ran the same problem with dif-
ferent numerical codes and obtained different answers.
Such inability to obtain consistent results from numer-
ical codes may be the consequence of fractal basic
boundaries in either the initial-condition space or the
parameter space for the nonlinear problem.
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