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N-Dependent Fractional Statistics of N Vortices
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A system of N identical point vortices on a plane, e.g. , a superfluid- He thin film, is studied with
use of elementary quantum mechanics. We find the surprising result that the system obeys frac-
tional or 8 statistics which depends on N, where 8(N) = m/N or m/N + m . This result arises from the
angular momentum contained in the zero-point motion of the vortices.
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Fractional topological quantum numbers have re-
cently been emerging as a common feature of
condensed-matter physics in lower dimensions, and
lower-dimensional relativistic field theories. Specifi-
cally, solitons with fractional charge and fermion
number, ' and with fractional spin and statistics, 2 have
appeared in a number of contexts. A notable example
is the —,e quasiparticle in the quantum Hall fluid. In a
previous paper, we argued that the vortex in a thin
film of superfiuid, which is a two-dimensional soliton
with a topologically nontrivial hole at its center,
possesses fractional, or 8, statistics. This we did by
studying the quantum dynamics of two identical vor-
tices. We concluded that a single vortex in this system
obeys quarter-fractional statistics (i.e., 8 = m /2 or
3m/2). Hence, it is neither a boson (8=0) nor a fer-
mion (8=+).

Here we generalize this previous result to the case of
X identical point vortices on a plane. These N vortices
carry N holes, with global consequences. The surpris-
ing outcome of this present study is that 8 for this sys-
tem depends on the number of vortices: We find that
8(N) = m/N or n/N+nIt has been.. recently pointed

out that the braid group allo~s representations where 9
depends on the total number of particles. Ringwood
and Woodward, 5 in the specific case of 't Hooft-
Polyakov monopoles, have suggested that the set of al-
lowed values of 8 depends on the number of mono-
poles. More generally, Thouless and Wu have argued
that the braid group acting on particles on a sphere
leads to a number dependence of the set of possible 8
values. However, in previous models, e.g. , anyons, 0
was assumed to be independent of the number of parti-
cles. This then, is the first specific dynamical system
for which N-dependent statistics is suggested as being
necessary.

A real physical system of vortices, e.g. , in
superfluid-4He thin films, arises nontrivially from the
underlying many-body problem. Here, for want of a
satisfactory many-body theory in general, we start not
from the microscopic picture, but from a macroscopic
effective Hamiltonian for point vortices. A justifica-
tion for this lies in the fact that the Kosterlitz-
Thouless theory, which starts with the same Hamil-
tonian, has been experimentally verified. 8 The key as-
sumptions which we share in common with the
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x dx;/dt = +BR',/By;,

~ dy;/dt = —BH,/Bx;,

where, after subtraction of the self-energy of individu-

(x~,x2, . . . , x~ )~

~2x 2/
Ho(ux, ) e

2x 2/
H~ t(nx)) e

&osterljtz-Thouless theory are (I) that the vortices are
pointlike, (II) that the vortices move according to a
Hamiltonian that has no kinetic term, and (III) that
the thin film constitutes a t~o-dimensional, incompressi-
ble fluid. However, we go on to make the further as-
sumptions (IV) that canonical quantization of vortex
motion can be carried out, and (V) that the resulting
angular momentum operator [see Eq. (6) below] has
no arbitrary additive constant. We would like now to
discuss these assumptions. Concerning (I), the point
like vortex is assumed to be a soliton carrying only one
hole, not two or more nearby holes, at its core. It has
been shown that such solitons, with separations large
compared with their core sizes, can be approximated as
point particles obeying Kirchhoff's equations [Eqs.
(1)—(4) below]. 9 Concerning (II), the lack of a kinetic
term in the Hamiltonian can be interpreted as the vor-
tices being massless. '0 Physically, each vortex is car-
ried along with the local velocity field resulting from
all the other vortices in the system. This assumption
has experimental support. " Concerning (III), the
two dimensi on-ali ty and incompressibility of a near-
monolayer film arise from strong van der Waals forces
which bind He atoms so tightly to the substrate that
all motions perpendicular to the substrate, e.g. , rip-
plons, are quantized, and hence frozen out at low tem-
peratures, to some level of approximation. Thus, the
system is effectively two dimensional. Similarly, vor-
tex motions are effectively decoupled from all frozen
compressible degrees of freedom, e.g. , phonons. Con-
cerning (IV), we argue that canonical quantization is
necessary, because such a procedure, which has been
used previously for vortex dynamics, '2 avoids a viola-
tion of the uncertainty principle by massless vortices.
Furthermore, the requirement that the angular
momentum of the superfluid be quantized is
equivalent to quantization of vortex motion. Con-
cerning (V), we argue that the absence of an arbitrary
constant in Eq. (6) arises from a description of the sys-
tem in an inertial frame.

The classical equations of motion obeyed by
identical point vortices of counterclockwise circulation
~ & 0 centered at (x;,y;), i = 1, 2, . . . , N, are

I~ = Xl +Pi
i=1

one can show from Eq. (5) that

[L~,x, ] = +ity, ,

[L~,y; ] = —itx;.

(6)

(7)

Hence, I.& is the generator of infinitesimal rotations,
i.e., the angular momentum of the N-vortex system,
in agreement with the classical expression. ' To find
the eigenfunctions of Lz, we write

y, = (C/i)B/Bx, ,

so that Jz is formally identical to the sum of N one-
dimensional uncoupled simple harmonic-oscillator
Hamiltonians. The eigenvalue spectrum of I.z con-
sists of multiples of —,h, because of zero-point motion.
By inspection, a totally symmetric state of the system
in x coordinates is

(xt,x2, . . . , x~)~ exp ——a x,(+) 1 2 2

i =1

where u = ~C ~

'. It is also possible to construct a to-
tally antisymmetric wave function in the usual way,
with use of the Slater determinant,

~2x 2/
Ho(~xw )e

~2x 2/

al vortices, and definition of a as a scale factor,

H. = —(K'/4m) X ln(r, ,'/a'), (3)
i&j

r;2 = (x, —x, )2+ (y, —y,. )2. (4)
For a film of density p and thickness 5, the energy of
the system is H = (p5)H, . By inspection, these equa-
tions are Hamiltonian in form. One classical solution
to these equations consists of N identical, equally
spaced vortices on a circle, where each vortex is car-
ried along by the resultant velocity field of all the oth-
er vortices symmetrically. This symmetry implies that
N —1 consecutive transpositions of a given vortex
with its nearest neighbor to the right on the circle is
equivalent to a counterclockwise rotation of the entire
circle around its center by an angle of 2m. /N. We seek
a quantum generalization of this solution.

To quantize these equations of motion, we employ
the standard method of canonical quantization. By in-
spection of Eqs. (1) and (2), we see that the canonical-
ly conjugate variables are x; and y;. Hence'

[x;,y, ] =iC5;, ,

where C =t/~p5. ' Defining the operator
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where H„(o.x;) are the Hermite polynomials. These
states give the smallest angular momentum eigen-
values for the symmetric and antisymmetric cases,
respectively:

I qy(+) & Ng~(+)

L, ~0(-) = ——,'N'~~(-).
(12)

+ (g~+ Yz)
2

X [(x, —x, )'+ (y, —y, )'],
i&j

(14)

where X= X;~ ~ x;/N and Y=g;~ &y;/N are the coor-
dinates of the center of vorticity. It follows that

[X, Y] =iC/N,

[l~, (x; —x, )]= +i&(y; —
y, ),

[l~, (y; —y, )]= —ih(x; —x, ),

[4.Lw] = [4.J'J'"'] = [I-x I'ij'"'] = o

[H, l~] = [H,L~]= [HI'~J ] =0

(15)

(16)

(19)

where PJ" exchanges the x; and xj coordinates of
+(x~,xq, . . . , x&). Since (P~ ) =1, the one-
dimensional unitary representations of the P;,("), the
generators of the symmetric group S~, are either +1
or —1, simultaneously for all (ij ) pairs. Hence, all an-
gular momentum wave functions are either totally
symmetric or totally antisymmetric. From Eqs. (12),

Excited states, symmetric or antisymmetric, are easy
to construct from these states by use of raising opera-
tions. This procedure provides a comp/ete and unique
solution to the angular momentum eigenvalue prob-
lem. Whether the vortices should be in a symmetric
or antisymmetric state is not determined from the
theory. Usually an antisymmetric state indicates that it
is formed by fermions, and a symmetric state that it is
formed by bosons, but this is not so here. This is im-
mediately obvious from the fact that the angular
momentum for the symmetric state is half fractional
for N odd, which can never occur for bosons. In gen-
eral, in order to find the phase factor upon inter-
change, exp( —i 8), it would seem that one could in-
terchange vortices i and j by exchanging x; with xj, and
then y; with yj. But here one cannot specify both x;
and y; since [x;,y;]~0. Hence, symmetry or antisym-
metry in the x coordinates alone does not imply Bose
or Fermi statistics.

The angular momentum itself is the key to deter-
mining 8. It will prove convenient to work not with
L& directly, but rather with the operator lz, in which
the center-of-vorticity angular momentum is subtract-
ed out:

(14), and (15), we get

i e&+'= ——,
' (N —I)a+&+&. (20)

From Eqs. (16) and (17), we see that l~ is the genera-
tor of infinitesimal mutual rotations for all vortex pairs
(ij ) .From this it follows that the operator
exp(i 2m'/t) transposes all N(N —1)/2 pairs of vor-
tices twice in a counterclockwise sense. Each counter-
clockwise transposition results in a phase factor
exp( —i 8). Also, the operator exp(i2m. l~/iI. ) is
equivalent to a counterclockwise rotation of the entire
system around its center by an angle 2m. ' Thus,

~ w/ +(+) —i~(w —&)+(+)e ~0 =e
—ice (w —i)@(+)

0

This leads to the result

8= n/N.

Similarly from Eqs. (13), (14), and (15), we get

i„e,' &= ——,
' -(N' —I)te|- &.

(21)

(22)

(23)

Let us rewrite 0'0 as

ii (a,' —a,')co+', (24)
i&j

where a; = ~2C~ 'i (x; —iy;) is the raising operator
for the angular momentum of the ith vortex. In this
form it is apparent that all pairs are excited identically.
Repeating the argument used to determine 8 for the
%0+ state, we find that

2ml~/f~ ( ) I' (~2 i) ~ ( )

—lee(W —i)".( —)=e
This leads to the result

&= ~/N+ m. .

(25)

In the limit N ~ of Eqs. (22) and (26), we recov-
er the usual Bose and Fermi statistics. Thus, the ther-
modynamic limit N ~ is the usual one.

Here we have found 8 by dividing the total phase
change upon interchange of all pairs by the total
number of pairs. '6 It would seem that a more direct
way of defining 8 would be to find the phase change
resulting from an interchange of one pair along a
counterclockwise loop, keeping all other vortices outside.
However, it is impossible to construct an operator
which will insure this last condition, since the vortices
cannot be localized in configuration space, even in
principle, since [x;,y;]&0. In any case, the physically
observable angular momentum, I~, has unusual prop-
erties. The symmetric ground state, for instance, has
an eigenvalue of l~ proportional to N —1 while for the
¹independent 8 statistics it would be proportional to
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N (N —1)/2 6

In view of the N dependence of 0, one might ask: Is
the relative motion of two nearby vortices affected by
the addition of a third vortex far away? The answer is
no, but there will be an additional superimposed rota-
tion of all three vortices about their common center of
vorticity. It is the zero-point angular momentum
about this center which yields the N-dependent 0
statistics.

All excited states have angular momentum values
differing by h times an integer from the smallest angu-
lar momentum. The angular momentum spectrum is
one sided corresponding to the fact that the classical
orbits of the like-signed vortices is always of one sense
only. Since all states are totally symmetric or antisym-
metric, there are only two possible values of 0, which
are given by Eqs. (22) and (26). Transitions between
symmetric and antisymmetric states are forbidden.
Hence, there should exist two distinct systems of N
vortices ("ortho" and "para"), in each of which half
of the states are missing as a result of statistics, like in
a diatomic molecule with identical nuclei, e.g. , H2.

The Abrikosov vortex in type-II superconductors is
essentially the same topological soliton as the vortex in
superfluid He. ' Hence, these results should also ap-

ply to N Abrikosov vortices.
We believe that these results have a deeper topologi-

cal significance. By inspection of Eqs. (1) and (2), one
sees that the configuration space of the N vortices is
symplectic, i.e., it has the geometrical structure of a
phase space of 2N dimensions. This space is multiply
connected. The unusual statistics arises from the
zero-point motion of these vortices, which can be
characterized by the Maslov topological index m. '
Here m =2N. Also note that the specific logarithmic
form of the Hamiltonian, Eq. (3), did not enter our
analysis.
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