
VOLUME 55) NUMBER 13 PHYSICAL REVIEW LETTERS 23 SEPTEMBER 1985

Comment on "Electri'cal-Conductivity Fluctua-
tions near the Percolation Threshold"

Recently, Chen and Chou' have reported the results
of a careful study of 1/f noise in three-dimensional
(3D) carbon-wax mixtures near the percolation
threshold p, . Close to p„both the resistance R and
the power spectrum Sz have been shown to diverge in
perfect agreement with the predictions of Rammal and
co-workers. In the notations of Ref. 2, R —(hp)
and S„/R —(Ap) ", the measured exponents are
respectively t = 2.3 + 0.4 and ~ = 5 + 1. The direct plot
of S„vs R leads to Sz —R ~ where Q = 2+ ~/t
= 3.7 + 0.2 is the noise-versus-resistance exponent.
Similar measurements of Q on 2D films have also
been performed by two other groups. In clumped
evaporated gold films subjected to ion milling, a large
value Q =4 has been obtained. Much larger values,
5.4~ Q ~ 8.1, were obtained4 in a large number of
metallic films (Al, Cr, In) where the metal was re-
moved by sandblasting. These deviations from the lat-
tice percolation predictions can be attributed to contin-
uum corrections which may be at the origin of the
enhancement of both t and K. The purpose of this
Comment is to show that the 3D data are probably the
first quantitative confirmation of this idea.

First let us mention that the measured exponents
are actually outside the bounds found for Q in the lat-
tice percolation theory. With use of the known
bounds for the exponent b = d —K/v = d —t (Q—2)/v, —

PL, ~ b ~ —2PL —1/v, it is easy to obtain
2.82 ~ Q ~ 3.05 in 2D (v= —, , —PI ——0.973) and
2.84~ Q ~2.85 in 3D (v=0.88, —pi =1.16). Here
pI ——d —2 —t/v, d is the Euclidean dimension, and v

is the correlation-length critical exponent. The
effective-medium theory (EMT) gives2 the value
Q =3 for Q.

As was pointed out by various authors, transport ex-
ponents such as t and K can be modified in continuum
percolation models in contrast with static exponents
(e.g. , v). The simplest model is provided by the fol-
lowing probability distribution p (g) of bond conduc-
tances in the equivalent lattice model: p (g )
= (1 —p)5(g) +ph (g). Here h (g) is a continuous
normalized function. The "Swiss-cheese" class of
models is actually a possible realization of p(g), with
an anomalous distribution h(g) —g (~ & 1) ne«
g =0. For this class of models, the conductivity ex-
ponent is given by t(n) = (d —2)v+1/(1 —n) for
0~ a & 1 and t(o. ) = (d —2)v+1 for n ~0. This
result is implicitly contained in the work of Ben-
Mizrahi and Bergman, coincides with the large-d lim-
it, and was rederived recently by use of an e = 6 —d
expansion technique. The simplest derivation of this
result is probably the following argument. The con-
ductance g = (g,g, ') ' of L conductances (g, ),
1 ~ I ~ L, taken from h (g ) and combined in series is

given, at g —0, by min(g, , 1 ~ l ~ L I. A simple calcu-
lation yields g —Lt~t t) (0 ~ ~ & I), g —L —'

(n ~ 0), and leads to the desired results —vpl
= 1/(1 —n) and 1, respectively. Note that r (a) so
obtained differs from its EMT value:
r = r (cr) —v(d —2).

The calculation of K can be carried out similarly,
with use of the series composition rule for the relative
noise: s =nisi(g/gi) . For the sake of simplicity we
consider the class of "Swiss-cheese" models and as-
sumes gt —51", st —5, " where u = 1/(1 —n) and t is
the exponent relating the relative noise sI of bond l to
the neck width 5I. Depending on the values of u and
v, one obtains three distinct relevant cases: (a)
K = dv+u for u & 1, u+2u & 1; (b) K=dv+ (2u
4u —2) for u & 1, u+2u & 1; and (c) ~=dv —1 for
u ( 1 and v + 2u ( 1. These expressions are actually
different from the EMT resultss Q = 2+ t/u at u & 1

and Q = 3+ (t —I)/u at u & 1, which are expected to
be correct far from p, .

Within the framework of "Swiss-cheese" models,
where u = d ——', and v = d ——,', one obtains the fol-
lowing results. At d =2 (case b), t = t =1, K=3.16,

=2, and Q =5.16, Q =4. At d =3 (case a),
t =2.38, t =1.50, K=5.14, K =2.5, and Q =4.16,
Q =3.67. Clearly, the data of Ref. 1 fit nicely with
these estimations. The results of Ref. 3 seem to fol-
low the EMT5 estimates, whereas those of Ref. 4 are
definitely larger than the above estimates. Note that,
in all cases, an enhancement of Q is obtained. Howev-
er, a definitive comparison in 2D would require the
simultaneous measurement of both exponents, t and

Furthermore, the measurement of Sz at different
temperatures would be useful for the identification of
the conduction mechanism and the microscopic origin
of the observed noise.
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