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We present a first-principles theory for the quasiparticle energies of semiconductors and insula-
tors. The full dielectric matrix is used to evaluate the nonlocal, energy-dependent electron self-
energy operator. Both local-field effects and dynamical screening are found to be essential for
understanding quasiparticle energies. Results for the band gaps, optical transitions, and band
dispersions for silicon and diamond are in excellent agreement with existing experimental data.
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The problem of first-principles calculation of quasi-
particle properties and optical constants of semicon-
ductors and insulators is of longstanding interest. Its
solution is of major importance both from the point of
view of many-body theory and for practical studies of
excited-state properties of solids. A major difficulty in
the theory stems from the necessity of treating the
dynamical interactions between electrons in a solid
with an energy gap and significant charge inhomo-
geneity. The density-functional formalism in principle
provides an exact formulation for ground-state proper-
ties,! and has had considerable success within the
local-density approximation (LDA)? for many proper-
ties. Unfortunately, the eigenvalues from the effec-
tive one-electron equations in the density-functional
theory are not formally interpretable as quasiparticle
energies. Indeed, the failure of that interpretation for
the gap in semiconductors and insulators is well docu-
mented; discrepancies with experiment are typically
30%-50%.2 An explicit correction to the Kohn-Sham
minimum gap has been proposed and calculated for
simple models of semiconductors.> In addition,
prompted by the failure of the one-electron theory to
describe the gap, recent work®> has focused on the
calculation of the quasiparticle energies from the elec-
tron self-energy operator 2.

In this Letter, we present a first-principles theory of
the quasiparticle energies in semiconductors and insu-
lators. The theory is based on evaluation of = (r, r';E)
to first order in the dressed Green’s function and the
screened Coulomb interaction: the GW approxima-
tion.® We show that three critical elements are re-
quired for a quantitative theory for semiconductors
and insulators: proper account of the nonlocality of X,
inclusion of the full dielectric matrix in the screening
of the bare Coulomb interaction, and adequate treat-
ment of dynamical effects in the screening. We have
applied the theory to the prototypical cases of silicon
and diamond where relativistic effects are negligible
and the cores are small. Results for the band gaps, op-
tical transitions, and band dispersions are all within a
few percent of the experimental values. One of the

crucial factors in this result is the effect of local fields,
which can be evaluated through the screening from the
off-diagonal elements of the dielectric matrix. This
screening deepens the Coulomb-hole contribution to
the electron self-energy for states with wave functions
at regions of concentrated charge density as found in
the bond chain.

To examine the role of local-field effects and of
dynamical screening, we present the calculation in
three stages starting with the Coulomb-hole—
screened-exchange (COHSEX) approximation to I
which essentially leaves out the effects of dynamical
screening.® The trends are summarized in Fig. 1 for
the indirect gap E, and the E; optical transition
(L,,— L) of Si as compared to experiment.’
Displayed are calculations using the LDA eigenvalues,
the COHSEX approximation for X without local-field
(LF) effects, the COHSEX approximation with the full
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FIG. 1. Bar graphs comparing several calculations of (a)
the minimum gap £, and (b) the E; optical transition in Si
to experimental results (Ref. 7). The calculations shown are
discussed in the text.
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dielectric matrix, and the full GW approximation for % as described below. Figure 1 demonstrates the importance
of local fields and illustrates the excellent results from the full dynamical calculation.
The quasiparticle energies and wave functions are obtained by solving

(T + Vet ViU () + [ @3 S(5 03B ¥ (1) = By (1), 1)

The GW approximation for 3 is®

S(r,r'E) = if(dw/27-r)e"5“’G(r, rE—w)W(rrw), 2)

where & is a positive infinitesimal. The dressed
Green’s function is then given in terms of the quasi-
particle wave functions and energies by

_ 3 da(Dui ) ®

G(r,r;E) —,
nk E—Enk_ 18,,k

and W is the screened Coulomb interaction given by
W(r, ')
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where €~ ! is the full time-ordered dielectric matrix.

In principle, 3, G, and W are coupled together with a
vertex function T' by a set of integral equations. We
approximate I' =1 and, consistent with that, use the
random-phase approximation (RPA) to obtain e~
We propose good initial approximations for G and W
and proceed to evaluate the quasiparticle energies.
Compared to case of simple metals which can be
modeled by an electron gas, screening in an insulator
is qualitatively different and more complex. The cal-
culation therefore requires the full dielectric matrix

e !1(r,r';») which depends separately on r and r’ as
well as the full crystalline Green’s function. In the
present approach, G (r, r';E) is constructed with use of
wave functions and band energies from a LDA calcula-
tion. The use of an energy-independent potential at
this stage greatly simplifies the calculation and, as pre-
viously noted, is a good approximation.® The screened
Coulomb interaction in Eq. (4) requires the full dielec-
tric matrix. The static dielectric matrix, being a
ground-state property, is obtainable within the
density-functional theory.? We use a LDA band calcu-
lation with the standard Adler-Wiser formulation of
the dielectric matrix in reciprocal space® to obtain
eacl;,(q;w=0) from first principles in the RPA. We
found that inclusion of exchange-correlation effects in
the dielectric matrix within the LDA alters the final
results by <0.1 eV.

To extend the dielectric matrix to finite frequencies,
we propose a generalized plasmon-pole model since
Ime(‘;é,(q, w) is generally a peaked function in . For
each set of momentum components (q, G, G'), Ime ™!
is taken to be

Imegl (q0) =44, (@) [8(0—d55(0) —8(w+a54.(a)]. (5)

The full w-dependent dielectric matrix can then be ob-
tained once the matrices 4 and & are determined.
This is done exactly by use of the ab initio static dielec-
tric matrices calculated above with the Kramers-
Kronig relation,

eacl;,(q;())
= by T (U/mIP [ dow Imegd (gi0),  (6)
and the Johnson sum rules,’
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where w, is the plasma frequency and p(G) are the
Fourier components of the crystalline charge density.
There are no adjustable parameters. Comparisons to
realistic calculations!® of €~ !(q;w) are favorable over
the important frequency range for & (w <®). The
model moreover reproduces the w and w~! moments

=

of the exact response function.!!

All of our calculations are based on the ab initio
pseudopotential'? band-structure method carried out in
a plane-wave basis. The basis gives full convergence
for both Si and diamond with a plane-wave energy cut-
off of 17 and 50 Ry, respectively. We use dielectric
matrices of size (depending on q) 140x 140 for Si and
220x%220 for diamond and note that they agree well
with direct calculations performed as recently pro-
posed.!* Equation (1) is solved by expansion of the
quasiparticle wave function in the basis of the LDA
wave functions. We find a posteriori that the quasipar-
ticle wave function is well represented by the LDA
wave function; i.e., the mixing of a given basis func-
tion with others affects the quasiparticle energies by
<0.05 eV for Si and by <0.1 eV for diamond. For the
full dynamical calculation, the frequency integration
required in Eq. (2) is easily done within the general-
ized plasmon-pole model. The self-energy operator in
Eq. (1) must be evaluated at the quasiparticle energy,
E,. We have further iterated to include the new spec-
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FIG. 2. Plots in the (110) plane of Si of the two parts of
the electron self-energy operator calculated in the COHSEX
approximation including the fu/l dielectric matrix. The bond
chain is indicated schematically. (a) The Coulomb-hole po-
tential, Vcou(r), with contour interval of 0.1 Ry. (b) The
screened-exchange part |r—r'|Sgex(r, 1), where 1’ is fixed
in the bond center as indicated by the cross. The contours
are chosen to increase by powers of 2 from 0.2 Ry-a.u./cell.

trum in the Green’s function and found only small
changes in the quasiparticle energies. Numerical
results given here are estimated to have converged to
better than 0.1 eV for Si and 0.2 eV for diamond.

The self-energy operator naturally breaks into two
terms: Zgpx from the poles of G in the frequency in-
tegration in Eq. (2) which gives a dynamically
screened exchange (SEX) contribution, and Zcoy
from the poles in W which gives a Coulomb-hole
(COH) contribution. Alternatively, inclusion of corre-
lation effects modifies bare exchange by the effect of
virtual creation of electron-hole pairs and plasmons.
The COHSEX approximation of Hedin® is obtained by
taking the limit of zero exchange frequency. In this
case the COH term is simply interpreted as the in-
duced potential at the quasiparticle location r from the
polarization of the surrounding electrons by that parti-
cle at r. In this approximation, the COH term is a local
potential: Zcoy(r, ') =8(r—r1') Vcou(r). Figure 2(a)
shows Vcoy in the (110) plane of Si. If only the diag-
onal terms in e~ ! are included or equivalently local
fields are neglected and the screening in the solid is
treated as isotropic and uniform, the result for the
COH potential is uniform. The COH term has no in-
fluence on the gaps when local fields are neglected in
this approximation. Within the COHSEX approxima-
tion the SEX term reduces to a static-screened-
exchange operator Zgpx (r, r'), which is plotted in Fig.
2(b), for the case where r’ is fixed in the center of a
bond. The operator is manifestly nonlocal with its first
node at roughly one bond length and significant lobes
at larger distance.

Referring to Fig. 1, we see that the COHSEX ap-
proximation without local fields gives a small improve-
ment as compared to the usual LDA eigenvalues. For
the case of diamond the results are somewhat better,
in agreement with previous calculation.!* We under-
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TABLE I. Comparison of results (in electronvolts) from
the present calculation of the quasiparticle energies to the
results of the LDA eigenvalues and to experiment.

Present
LDA work Expt.2
Silicon
E, 0.52 1.21 1.17
=T, 11.93 11.84 12.5+£0.6
1"25,"—' s 2.57 3.27 3.40
L, r25lv 1.21 1.26 1.2+0.2, 1.5°
Fzs,v-' L. 1.51 2.18 2.1,°2.4°
LJ,V-—' Ly, 2.73 3.44 3.45
LS,"—' Lj, 4.58 5.40 5.50
Diamond

E, 3.90 5.43 5.48
Ty, Fzs’ 21.65 22.73 242 +1
Fzs’.,_' Iyse 5.51 7.38 7.3
Xa— Xic 10.84 12.71 12.5

aReference 7 except where noted.
bReference 15.
°Reference 16.

stand the improvement to arise from proper treatment
of the nonlocality of the SEX term (i.e., the crystalline
Green’s function). Inclusion of the full static dielec-
tric matrix gives a large change, especially for the in-
direct gap and bandwidth. This is largely due to the
COH term illustrated in Fig. 2(a). Local fields
describe the differences in polarizability at the various
points in the unit cell. With the concentration of
bonding charge in semiconductors, this is demonstra-
bly an important effect. Finally, inclusion of dynami-
cal effects reduces the gaps to good agreement with
experiment. We understand the last effect as follows.
Making the zero-exchange-frequency approximation
for the matrix elements of X (the COHSEX approxi-
mation) overestimates the effect of virtual plasmon
creation.

Detailed results comparing the GW calculation to ex-
periment”- 1316 are given in Table I for the best charac-
terized transitions and valence-band features. The
overall agreement is excellent. In particular we note
that for Si, in addition to the features described in Fig.
1, the second indirect edge at L is well reproduced,
although there is some disagreement between the opti-
cal measurement and the inverse-photoemission
result. Results for the £, (L,, — Lj.) feature are ex-
cellent. In general, although the band gap is unambig-
uous, interpretation of the optical spectrum in terms of
the quasiparticle energies can be subtle because of fur-
ther many-body effects, i.e., the electron-hole interac-
tion. The diamond results are also in good agreement
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with experiment.

The application of the electron self-energy to the
understanding of excited-state properties of real ma-
terials has had a long history. Phillips proposed a
screened-exchange approach based on a generalized
Koopman’s theorem and, with Kleinman, made esti-
mates for Si.!”7 Early calculations were done by Brink-
man and Goodman!® and by Kane!® for Si and by
Brener!* for diamond using the COHSEX approxima-
tion and neglecting local-field effects. As is evident
from Fig. 1, the neglect of local-field effects and
dynamic screening compensates to some degree, lead-
ing to reasonable results in some cases. Wang and
Pickett* use a LDA for the electron self-energy opera-
tor, finding systematic improvement over the LDA
gaps. The work of Strinati, Mattausch, and Hanke® us-
ing a minimal-basis tight-binding approach is similar to
the present calculation as regards the Green’s-function
formalism, although they go beyond the RPA in the
dielectric matrix. Their calculated gaps in Si are con-
sistently too large. The work of Horsch, Horsch, and
Fulde,2® using a local correlation approach, is a varia-
tional calculation. Our results for the direct gap in dia-
mond agree with those of Strinati, Mattausch, and
Hanke and Horsch, Horsch, and Fulde but other de-
tails of the quasiparticle energies differ substantially,
e.g., for the direct gap at the zone edge noted in Table
I. Sterne and Inkson?! using an extreme tight-binding
(flat band) model conclude that the Coulomb-hole
contribution to the band-gap correction is negligible, in
contrast to the present work.
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