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Anisotropy and Cluster Growth by Diffusion-Limited Aggregation
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We describe a simple theory of diffusion-limited —aggregation cluster growth which relates the
large-scale shape of the cluster to its fracta1 dimension. We present results of computer simulation
for DLA clusters grown with anisotropic sticking rules which provide strong confirmation of our
model in two dimensions. New universal exponents are predicted and found. We are also able to
obtain good estimates for the fracta1 dimension of ordinary DLA.
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Kinetic growth models describing the formation of
large aggregates from small subunits have recently at-
tracted considerable interest. Especially studied has
been the diffusion-limited —aggregation (DLA) model
of Witten and Sander. ' This model has been used to
describe such diverse phenomena as dendritic electro-
deposition, sputter deposition of thin films of
NbGe2, and the viscous fingering of water displacing
oil in a porous medium. Many variants of DLA have
been studied by computer simulation and many incon-
clusive attempts have been made to calculate analyti-
cally the fractal dimension, D, of DLA clusters as a
function of the dimension, d, of the space in which
they were grown. At present the one exact analytic
result for DLA clusters grown with d finite is the ine-
quality D ~ d —1 which was obtained by a causality
bound argument. 5

In this Letter we propose a simple analytic model for
the growth of DLA clusters in two dimensions. We
relate the large-scale diamond shape of the cluster to
its rate of growth in the x and y directions and to its
fractal dimension. For ordinary DLA clusters grown
in two dimensions the model predicts D = —,

' and for
DLA clusters grown with anisotropic sticking probabil-
ities it indicates (i) that any sticking anisotropy will
force the cluster to grow into a rodlike object and (ii)
that Li —N and L2 —N' in the limit N
where Li and L2 are the dimensions of the cluster in
the "easy" and "hard" directions of growth, and N is
the number of particles in the clugter. We believe that
these anisotropic exponents are exact, whereas the
result for the isotropic case may only be approximate.
However, it is not only the predictive power of our
model that is important; at least equally so is the new
simple and intuitive picture of DLA growth that it pro-
vides.

We have confirmed the predictions of our model by
growing (by computer simulation) large ( —105 parti-
cles) DLA clusters with various anisotropic sticking
probabilities on a square lattice. No results for such
clusters are available in the literature; this is surprising
because they are a simple variant of ordinary DLA and
it is easy to imagine physical situations where they will
occur. We grew these clusters as follows: Each parti-

cle is launched from a randomly chosen place on a cir-
cle enclosing the cluster and centered on the cluster
center of mass. It moves diffusively (by use of the al-
gorithm of Ball and Brady6) until it is either two hun-
dred cluster radii from the cluster, in which case it is
"killed" and another particle is started from the
launch circle, or until it is adjacent to the cluster. If
there is an occupied nearest-neighbor cluster site to
the right or the left of the particle it sticks and another
particle is launched. If the only occupied nearest-
neighbor site is above or below the particle it sticks
with probability p and continues its random walk (with
the constraint that it cannot move onto the cluster)
with probability 1 —p.

We start from the growth rate of the cluster. By es-
timating both the rate of gain of particles, dN/dt, and
the increase of cluster radius, dR/dt, we can eliminate
time to find dR/dN and hence the scaling of R with N
Following Ref. 5 we study the extremal radius of the
cluster so that dR/dt is given by the rate of deposition
on the most extreme tips. The crucial issue, then, is
the disposition of the absorbing cluster boundary rela-
tive to these tips. We model this by a cone of exterior
half angle p. There are three motivations for this: (i)
The cone angle is directly related to the singularity of
the deposition rate onto the tip; (ii) this is the only
simple scale-invariant form; and (iii) large anisotropic
DLA clusters are strikingly diamond shaped as shown
in Fig. 1(a). For an infinite cone the appropriate solu-
tion to %24 = 0 with 4 = 0 on the boundary 0 + p is

4(r, 0) = Cr" P cos(m0/2P),

where C is a normalization factor. Thus the steady-
state flux of random walkers onto the cone edge at a
distance p from its tip [see Fig. 1(b) ] is

u(p) = (vr/2p)Cp' (2)

To find the growth rate of the cluster we introduce a
large cutoff at p

—R and a small cutoff at p
—a, where

a is the tip radius or lattice spacing (which we take to
be unity). Thus from (2), by integration, we find
dN/dt = CR t and dR /dt = C so that dR /dN= R ~/2P

The above argument gives no indication as to the
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(a)
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FIG. l. (a) A 50000-particle DLA cluster grown with

p = T. (b) Model cone geometry. (c) Model diamond

geometry.

value of P; to find how P evolves we must consider
the overall shape of the cluster and not just the rate of
deposition onto a single extremal tip. To do this we
model a DLA cluster as a perfectly absorbing diamond
[see Fig. 1(c)]. We find the steady-state particle flux
onto it by using a Schwarz-Christoffel mapping to
solve V 4=0 with 4=0 on the diamond boundary.
The flux onto the diamond near its extremal points
(tips) along the x and y axes, u„and u~, satisfy

u„—C(1/R) (t „/R)

u, —C (1/R) (t,/R)

(3)

(4)

dX/dN = (dX/dt) (dt /dN) = AR

dY/dN = (dY/dt) (dt/dN) = BR

(5)

(6)

The coefficients 3 and 8 are bounded of order 1 but
may be slowly varying functions of Land Y and of p.

It should be understood that a number of approxi-
mations are implied in these equations. (i) Modeling a
DLA cluster as a perfectly absorbing diamond (or
cone) means neglecting fluctuations in the shape of a
single DLA cluster. (ii) We have assumed that DLA
clusters grown with anisotropic sticking probabilities
can be modeled as perfect absorbers although particles
do not necessarily stick on first contact. This is be-
cause any particle will stick near its first contact point
with the cluster. 7 The average distance between the

Here R = —, (X + Y )'t is the length of each side of
the diamond, J and Y are the tip-to-tip dimensions,
P„=m —arctan( Y/X), P = n./2+ arctan( Y/X), and

p and p~ are the distances along the edge of the dia-
mond from its x and y tips. We also find dN/dt —C
independent of R by Gauss's theorem. Again, using a
short-distance cutoff to eliminate the divergence in the
flux at the tips of the diamond, and identifying dX/dt
with u„and dY/dt with u~, we have

first and final contact points is independent of the size
of the cluster and thus sticking is local on the scale
where our equations are valid. (iii) We approximated
the exact solution for the exterior of a perfectly ab-
sorbing diamond (however, we retained the correctly
scaling divergences of the steady-state particle flux at
the corners of the diamond). (iv) It should finally be
stressed that these are continuum equations; they ap-
ply to the mean growth rates of the length and width
of a DLA cluster.

For an ordinary DLA cluster (p = 1) grown from a
right-angled diamond profile (Xp= Yp) the two func-
tions 2 and 8 must be equal and Eqs. (5) and (6) im-
ply that L = Y throughout the growth of the cluster.
Hence P„=P~ = 3m/4 at all times, and so by integrat-
ing (5) and (6) one has R —N t . Thus our model
yields a fractal dimension of D = —,

' for ordinary DLA
grown in two dimensions from a right-angled diamond
profile. The cone model also gives D = —,'if one in-
puts by hand the requirement that the cone be right
angled. This result compares satisfactorily with the
simulation result of Meakin, 9 D = 1.71 + 0.01.

A DLA cluster grown with anisotropic sticking pro-
babilities (p ( 1) from a right-angled diamond profile
should be described by Eqs. (5) and (6) with A & 8
initially. Thus L at first will grow faster than Y with
the result 8„&8~. This will make dX/dN greater and
greater than dY/dN causing the diamond to grow ever
more elongated in the x direction. Eventually the lim-
iting behavior L —N, Y —N' is approached and
the cluster shape becomes rodlike. It should be noted
that it is not necessary to have 3 )B throughout the
growth to obtain this limiting behavior.

It should be remarked that the arguments leading to
our result for the exponents do not involve the type of
lattice on which the clusters are grown. While we have
made appeal to the fact that our anisotropic clusters
are roughly diamond shaped, we expect this feature to
be a result of the uniaxial anisotropy and to be realized
to the same extent for clusters grown off lattice or on a
triangular lattice. Ordinary DLA clusters can hardly be
considered diamond shaped and the prediction D = —,

'
should be looked upon only as the extrapolation of our
arguments to the case of zero anisotropy.

We present here a representative sample of results
of an analysis of DLA clusters grown with anisotropic
sticking rules. Full details of this study will appear in a
separate publication. For each value p =,0 20,p,
—,', —,', —,', and —', of the sticking probability in the y
direction we grew at least seven clusters of 5 & 104 par-
ticles (105 particles for p= —,', —,

' ). It should be noted
at this point that Jullien, Kolb, and Botet' have con-
sidered the growth of DLA clusters from anisotropical-
ly diffusing particles on a plane strip geometry. They
find D = —', in the extreme asymptotic case which
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should correspond to our p going to zero. This agrees
with our results.

In each cluster the tip-to-tip distances X and Y (i.e.,
the difference in lattice units between the maximum
and minimum abscissae and ordinates) were measured
as a function of the number of particles N in the grow-
ing cluster. We also measured the corresponding radii
of gyration L~ and Yg in the x and y directions.

The average aspect ratio ( Y/X) for each set of clus-
ters with a given p is shown in Fig. 2 as a function of
N. this quantity does indeed decrease as N increases
and it is seen that the asymptotic behavior expected
from Eqs. (5) and (6) ( Y/X) —N ' 3 is reached al-
ready at N —O(10 ) for the lower values of p con-
sidered. This asymptotic behavior is approached more
slowly for values of p closer to 1.

For each cluster we measured the exponents
p,„(N,p) and lu~(N, p) [defined by X (Np) —N
and Yg (N p) —N ']. We obtained the average

1/p,

values p,„and p~ of the exponents for each set of clus-
ters grown with the same p. One can combine these
with the results for the average aspect ratio ( Y/X) as
a function of N in order to obtain p,„and p~ in terms
of ( Y/X) and p. Figure 3 collects the results of this
procedure for all values of p considered here.

In our equations (5) and (6) the dependence on p is
confined to the prefactors 3 and B. The results of Fig.
3 are, indeed, strongly suggestive of universal
behavior with small p-dependent corrections (complete
p independence would cause all the measured values of
p,„and p~ to lie on the same curve). The continuous
curves plotted in Fig. 3 indicate the behavior predicted
by a zeroth-order iteration of Eqs. (5) and (6) with 2
and B taken to be constants. Consider Eq. (5) in the
neighborhood of a value ( Yo/Xo) of ( Y/X): Expand-

ing the exponent m/2P„ in a Taylor series one has

dN/dX = AX '(1+evs lnX +. . .),
where vo and vp are respectively the values of the ex-
ponent (vr/2P„) and of its derivative at (X/ Y)
= (Xp/ Yp) . Neglecting terms in f = ( Y/X) ( Yo/
Xo) one has

p,„=m./2p„+ 1

and a similar treatment of Eq. (6) gives

~/2p„+ 1"'= 1+ /2p„— /2p,
These approximate values of p,„and p~ are the con-
tinuous curves plotted in Fig. 3 (note that they do not
depend on the values of A and B). They are in re-
markable agreement with the simulation data. It
should be noted that the sum of the exponents I/p, „
and I/p~ gives an indication of the compactness of the
cluster: When the sum approaches 1 the clusters be-
come compact.

The above results suggest the possibility that for any
p & 1 a DLA cluster will eventually (no matter how
smail the anisotropy) grow into a compact rodlike ob-
ject, its exponents evolving along curves close to those
shown in Fig. 3 as the cluster mass increases. A first
attempt to explore this issue is shown in Fig. 4: Each
of the curves represents the measured aspect ratio
( Y/X) as a function of p at fixed values of N. One
sees that if these curves are extrapolated towards p = 1
the value of ( Y/X) remains smaller than 1. This
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FIG. 2. Average measured aspect ratio ( Y/X) as a func-
tion of N. Error bars are shown at selected data points. The
curves refer to p = 3, 2 3 ~ s &o 2o, and so going from2 1 1 1 1 1 1

top to bottom.

FIG. 3. Measured values of p,„(lower set of data) and p»
(upper set) vs ( Y/X). Different groups of symbols corre-
spond to different p: from left to right p =

5O (circles),
p = 2'o (triangles), p = —,o (squares), p =

5 (circles), p =
3

(triangles), p =
2 (squares), and p =

3 (circles). Data for
different p represented by the same symbols do not overlap.
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FIG. 4. Average measured aspect ratio ( y jX) as a func-
tion of p at fixed values of N. Curves 3, B, and C corre-
spond to N = 10000, N = 30 000, and N = 50000.

agrees with a picture in which any cluster (with any
p ( 1) will as X ~ reach the fixed-point behavior
corresponding to p, = —,'and p~ =3.

In conclusion, the main difference between the
model presented here and previous continuous models
is the emphasis on the overall average geometrical
shape of the cluster. Using our model we are able to
predict the effect of sticking anisotropies in DLA clus-
ter growth and to produce values for the fractal dimen-
sion of ordinary DLA which agree well with computer
simulation results. We have presented numerical evi-
dence that any anisotropy causes DLA clusters to grow
into compact rodlike objects characterized by the scal-
ing relations L —X, Y —X' . Our model predicts
these relations and appears to describe very well the
approach to the scaling regime. Although our treat-
ment is approximate we hope that it will provide a use-
ful starting point towards a more complete understand-
ing of DLA. We also hope that our results on aniso-
tropic DLA will stimulate further research in this
direction.
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