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Critical Behavior of Two-Dimensional Systems with Continuous Symmetries

I. Affleck '
Service de Physique Theorique, Centre d'Etudies Nucleaires de Saclay, F 9119-1 Gif sur Yvet-te Cedex, France

(Received 18 June 1985)

Conformal invariance allows a complete classification of critical theories in two-dimensional sys-
tems with continuous symmetries. We study the spin-2 chain by non-Abelian bosonization to
show how it fits into this classification.
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Conformal invariance powerfully constrains two-dimensional critical phenomena. ' It implies the existence of a
local, conserved, traceless energy-momentum tensor, T „(X), with Tpp ——H, the Hamiltonian density, and
Tp t=P, the momentum density. It is convenient to adopt light-cone coordinates, x+ =xp+xi, T= (H P)/2, —
T = (H +P )/2. The conservation equation 8 T„„=0 implies 8+ T = 8 T = 0 so that T = T (x ), T = T (x+ ) .
The most general possible commutation relations are

—t[T(x ), T(x' )]=a(x —x' ) T' —2a'(x —x' ) T+(c/24m)r"'(x —x' ),
and similarly for T, with [ T, T] = 0. (The central
charge c will be the same for Tif the system is invari-
ant under parity, x x+, which we will assume to
be the case. ) Equation (1) is the Virasoro algebra. If
the central charge c is less than 1, the assumption of
unitarity2 yields a discrete set of possible values of c:
c= 1 —6/(n+1)(n+2) [n =2, 3, 4, . . .]. For each
of these values there is a discrete set of possible scal-
ing dimensions (critical exponents). These theories
describe critical and tricritical Potts models, which
have only discrete symmetries. 2

However, it is known that continuously variable crit-
ical points are possible for c ~1 and no restrictions
have been placed on possible values of c. The purpose
of this paper is to discuss the improvement in this situ-
ation for systems with continuous internal symmetries.
Physically interesting systems with U(1) or (at special
points) SU(2) symmetry include the six-vertex model,
quantum spin chains, electron gases, and the Kondo
problem. Other symmetries occur in the replica formu-
lation of disordered systems, for example, SU(2n) in
the quantum Hall-effect localization theory.

The logical extension of the above assumption of
conformal invariance to systems with continuous sym-
metries is the assumed existence of local, conserved
currents J„=(J+JJ—J). Conformal invariance im-
plies the existence of a well-defined scaling dimension
for J„which must be 1 if J„ is conserved. It then fol-
lows that J has zero curl, 3 as can be seen by con-
sideration of the (non-time-ordered) two-point func-
tion (0!J(x)J(x')!0). Lorentz invariance demands
that this have the form f'[(x —x') ]/(x —x' ) .
Scaling then requires f' to be a constant. Thus the
scalar field t)+ J annihilates the vacuum and is there-
fore zero. 4 Similarly 8 J= 0 so that J= J(x ),J= J(x+). These two equations are equivalent to
8"J„=0, 8&[e„„J"] =0. Thus the critical theory has
always doubled conserved currents and the symmetry of

[J(x ),J(x' )]= i5'(x —x' )/Mvr (2)

(and similarly for Jwith [J,J]=0; the constant can be
fixed by rescaling the currents). These follow from
the free scalar field theory: L = —,

' (t)„@)2.
Alternatively, we may observe that space-time

translations of J,J are generated by the energy-
momentum tensor T= ,' HAJJ, T= —,

' m. JJ [thi—s f-ollows

from the commutators of Eq. (2)]. Thus, the full
energy-momentum tensor must be the above one plus
possible additional terms which commute with the
current. If we assume irreducibility of the current (all
operators that commute with it are functions only of
the conserved charges) then these additional terms can
be ignored. But this is the energy-momentum tensor
of the free scalar field. Thus we conclude that any
U(1)-invariant critical point should be described by a
free scalar field. T, T obey the Virasoro algebra [Eq.
(1)] with central charge c = l. A continuous set of
possible scaling dimensions exists, corresponding to

! the model is of the form G S G at the critical point In.
many cases this means that a model with symmetry
group G will have an enlarged symmetry group G S G
at the critical point. This can occur if operators that
break the additional (chiral) symmetry are irrelevant.
This is fairly well known for G=U(1). The Thirring
(Luttinger) model is only critical when operators that
break the chiral symmetry (independent conservation
of left- and right-moving electron number) are absent
(or irrelevant). We show below that this is also true
for the isotropic spin chain [G = SU(2)].

In the U(l) case (a single conserved, curl-free
current, J~) it is convenient to solve the conservation
equations in terms of a scalar field: J„—e„„rl"@,
8 @=0. The most general commutators consistent
with Lorentz invariance and scaling are
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the operators e't'~ (with dimension P /4m). This criti-
cal point describes a free massless fermion L

f ~=Qzi r'l+Qt. +Pzi 6 Qz. This can be shown, for ex-' ~

ample, s by observing that T, T are quadratic in the
currents J= i:PL + @I.', J= i:Pz +@tt.', which obey
the commutators of Eq. (2). This amounts to a proof
of the bosonization formula Qy„Q = (1/ J~)e~„B"@.

The other standard formula, QL~pz~ exp[I (4~&)' '],
can be obtained by observing that the commutators

[J(x),yL, + yg (y) ] = —[J(x),yL+ yg (y) ]

=At. +A~~(x —y)
are correctly reproduced.

In the non-Abelian case the most general possible
commutators are

[J»(x ) J&(x' ) ] = t'f»~j&(x )Q(x x' ) + ikg»&Q'(x —x' )/2~ (3)

and similarly for J; [JJ]=0. (Here f ~ are the structure constants of the group; [T', T~] =if'+T'with the con-
ventional normalization Tr T»T~= 5»~/2. )

Once we have normalized the currents to obtain the first term in the above equations, k then appears as an arbi-

trary parameter. However, it is known that this (Kac-Moody) algebra only has unitary representations for k a posi-
tive integer (see Witten and references therein to the mathematical literature). Again, an energy-momentum ten-
sor quadratic in currents can be constructed ' which generates space-time translations of J,J: T
= 7rJ'J'/4(c„+ k ), T = 7r J'J'/4(c„+ k ) (where c„ is the quadratic Casimir operator in the adjoint representation:
f'~'f' = c„5'»). This tensor obeys the Virasoro algebra with c = k dim(G)/(c„+k) ~ 1. If we again assume ir-

reducibility of the currents then this is the energy-momentum tensor on the full Hilbert space. The currents can
again be represented by scalar fields:

J»= i Trg ' rl+ gT»//2m, J»= —i Tr(B g)g ' T»//2n, - (4)

where g is a field in the group manifold [e.g. , for SU(n) g is a special unitary n & n matrix]. The conservation
equations become 8 (g '8+g) =0 ( ~ 8+[(8 g)g ']=QI. These equations, the current commutators, and

the energy-momentum tensor can all be obtained7 from the Wess-Zumino Lagrangean
fO —1 & 3S= kTr[ d2x 9 g B~g '+ —,'„d xe"" g 'B~gg 'B„gg 'Bqg]/47r.

(The second term is defined by extending compacti-
fied two-dimensional space-time to the interior of a
ball. 7) The Kac-Moody algebra together with the qua-
dratic energy-momentum tensor completely determine
a discrete set of possible scaling dimensions. 8 9 A pri-
mary field' in the (r, r) representation of G G has
scaling dimension (c,+ c-, )/(c„+ k) where c, is the
quadratic Casimir operator in the r representation.
Thus if the symmetry group is non Abelian there -is a
discrete set ofpossible critical theories given by the Wess

Zumino models. (Even if the above irreducibility as-
sumption is relaxed it is known that only a finite
number of unitary representations of the Kac-Moody
algebra exists for each integer k. See Ref. 6 and refer-
ences therein to the mathematical literature. ) For the
case G = SU(n) and k = 1, this critical point is again
related to free fermions, this time with Lagrangean
L = PL'8 P ;t+P ~8 g~; (i = 1, . . . , n). The SU(n)
and U (1) currents,

J'= i:AL'( T')/AL~: J = &:AL~'4L '
(and similarly for J), obey respectively the SU(n)
Kac-Moody algebra with k = 1 and the Abelian algebra
of Eq. (2). The energy-momentum tensor can be writ-
ten T = m J'J'/4(n+ 1)+ 7r Jj/4n (and similarly for
T). Thus, the theory is equivalent to decoupled
Wess-Zumino (g) and free-boson @ theories. The

4t. 4~, g,' exp[I (47rln @)'"1, (6)

can be obtained by considering the commutators of the
currents with this object. Note that the scaling dimen-
sion of the field g can be read off from Eq. (6) by tak-
ing the difference between that for free fermions and
that for the free boson: dg = 1 —1/n.

As an illustration of these remarks we now consider
the most-studied two-dimensional critical point with
non-Abelian [SU(2)] symmetry. This is the six-vertex
model with isotropic vertex weights Vj',~

= Sk5f + Xhf'5k

(i =1,2 denotes the direction of the arrow). This is
equivalent to the q =4 Potts model. " Its transfer
matrix' gives the isotropic spin- —,

' chain, H
=g„S„S„+t.This, in turn, is equivalent to a lattice
fermion system, ' by the Jordan-signer transforma-
tion. In the continuum limit it becomes the Thirring
or sine-Gordon model6 at P2= 8m. This is equivalent
to the Coulomb-gas or xy model at the critical tempera-
ture. ' 's We shall use the quantum spin-chain formu-
lation as our starting point. The original derivation of
the critical exponents' relies on the sequence of
transformations mentioned above. The SU(2) sym-
metry becomes concealed at the first step (Jordan-
Wigner transformation to a single species of fermions).
The value of P in the sine-Gordon formulation is
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determined by uncontrollable renormalizations and, in
fact, was found indirectly by comparison with the
Bethe-Ansatz solution. ' Needless to say, the addition-
al SU(2) symmetry which appears in the critical theory
was completely hidden.

We begin'6 by an exact transformation of the spin
chain to a lattice fermion system which preserves the
full symmetry. Introducing a spin doublet P„' we write
S„= ,' P„—'cr/P„J (sums over i,j = 1, 2 are implied). The
standard fermion anticommutators [P„',f,}=5„5,',
(Q, f}= (Q, Q } = 0 reproduce the correct spin com-
mutators. However, the Hilbert space of the fermion
system is too large; we must project out states with one
particle per site: P„'P„;= 1. We now pass to the con-
tinuum limit. The standard way of doing this is'3'6 to
retain only the Fourier modes of Q; with momentum
k= +m/2a (where a is the lattice spacing). This is
motivated by the assumption that only states close to

the free-fermion ground state (in which all states with
~
k

~
( 7r/2a are occupied) are important, or equivalent-

ly that only Fourier components of S„with k =0,
vr/a, are important in the low-energy limit. Thus we
introduce two new fermionic variables, PL(2n+ —,

' ),
pz (2n + —,

' ) by the exact transformation

yg(n) =~a [I'gent (n +
2 ) + ( —i )y/g(n +

2 ) ]

(plus and minus for even and odd, respectively) which
preserves the canonical anticommutation relation. We
will use the notation of Eq. (6) for fermion bilinears
and also G=QLQg;+Q~QL;, G =QLo Q~+Q~o QL.
Then the constraint on even and odd sites becomes
J+J= G = 0. The spin variables become S'/a
= (J'+ J') + ( —1)"G'. Note that the J,J Schwinger
terms given by Eq. (3) cancel at equal times in the
commutator of the spin variables, as required. The
constraint also implies S2 = —,

' or (J'+ J')
+ ( G') 2 =

~ a . The Hamiltonian becomes

(upper and lower signs for n even and odd, respective-
ly). Finally, we take the continuum limit by treating
J', J', and 6' as slowly varying. If we drop derivative
terms and use the constraint this gives

zero at large length scales A. (L ) —1/lnL, if we assume
that no additional fixed points intervene between A. = 0
and A. =1. The critical behavior of the spin Tchain i-s

given by the theory of two free fermions with the free
charge boson removed, and this is precisely the k=1,
SU(2) Wess Zumino mo-del '7 Not. e that the theory of
Eq. (7) has only a single SU(2) symmetry but the in-
teraction term (J,J) which breaks the chiral SU(2) is
irrelevant and so the full SU(2) SU(2) symmetry of
the Wess-Zumino model emerges in the effective
theory at the critical point.

We can now easily read off the critical behavior.
After freezing of the charge boson, the spin variables
become

H= (a/2)JIdx[J J + J J +2JJ ]. (7)

The momentum operator is simply that of the free-
fermion theory. We now apply the non-Abelian bo-
sonization rules of Eqs. (4)—(6). The constraints be-
come 80@= Trgcos[(2m)'i2@] =0. These are satisfied
by +(x, t) = (n/8)'t2, with g arbitrary. The U(1) bo-
son $ is "frozen" but the SU(2) field g is completely
unconstrained. This is very natural, because the for-
mulation of the spin chain in terms of spin- —, fermions
introduced an additional, spurious U (1) "charge"
symmetry. The constraint breaks this symmetry and,
in the continuum limit, simply eliminates the corre-
sponding charge boson. Hand P become precisely that
of the SU(2), k =, 1 Wess-Zumino model (after we set
J= J=O) except for the interaction term 2J'J' in H.
But this term corresponds precisely to a Lorentz-
invariant interaction Lagrangean (A/4)(gyro-Q) or
(X/4)Trg+8 go-'TrB+gg+cr' in bosonized form.
The one-loop P function can be easily calculated (in
fermionic language). We find dA/d lnL = —(n/2)A2, . .

where L is the length scale. [Freezing of the U(1) bo-
son does not change this P function because the in-
teraction involves only the spin currents. ] The spin
chain has X = 1. Note that A. has the "wrong"
(nonasymptotically free) sign. Thus A. renormalizes to

S'= a (J'+ J') + ( —1)"a Tr(g —gt) o'. -

Thus the correlation function behaves as

(S(n) S(0)) —const/n + ( —1)"const/~n ~.

The first term comes from the current-current correla-
tion and scales as 1/n since the current has dimension
1; the second comes from the correlation function of g
which has scaling dimension —, [see discussion below
Eq. (6)]. Thus the correlation exponent is q= 1. The
effect of adding various operators to the Hamiltonian
can also be found. The only relevant operator that
preserves the SU(2) symmetry is a staggered interac-
tion, H H + yg„( —1)"S„.S„+&. This produces a
cross term:

H= {a'/2)g„[(J + J') +G'](n+-,') [(J'+J') +G'](n+1+ —,'),

ya g„+[J (n) + J'(n)]G'(n + 1)~ yg„@L,'@~;—$~'@L;+ (less relevant operators).

(The second form can be obtained by extending the fermion normal ordering to the four-fermion operator and
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thus obtaining quadratic terms. ) Finally, when we use
the bosonization formula and drop the charge boson
this becomes simply

H H+7 const dx Trg+ (less relevant).

Another way of deriving this is to observe that the
staggered interaction breaks the symmetry under
translation by one lattice site. We see from Eq. (8)
that this corresponds to the g —g symmetry of the
Wess-Zumino model. Trg is the most relevant opera-
tor that breaks this symmetry. Note also that it breaks
chiral SU(2) leaving only the diagonal SU(2). Since
Trg has scaling dimension —,

' we conclude that the
theory develops a mass gas with m —y2~ . A stag-
gered external field, H H+ hg( —) "S„', similarly

produces Trgo-' and thus again m~ h . A nonstag-
gered field produces (J'+ J'). This is a redundant
operator since it can be absorbed into a shift of the
currents by a constant. A nonisotropic coupling,
H H+ (b, —1)g„S„'S„'+t, leads to H H+ (6
—1)fdx(J'+ J') . 'This is a marginal operator
(dimension 2), and thus, with the appropriate sign,
produces an exponentially small mass gap, the
Kosterlitz-Thouless transition. '" We notes that the
possible Virasoro central charges for SU(2) are
c =3k/(k+2) =1, —', , —', , . . .3. In the special case
k = 1 we find c = 1, the same values as for the U(1)
case. Thus if the SU(2) symmetry is broken to U(1)
the critical theory may evolve continuously. All of
these conclusions are in complete agreement with
those found previously. 6 '3 ' '8 The present approach
exposes the source of marginal operators (responsible
for the Kosterlitz-Thouless transition) as the existence
of conserved currents and makes clear the full sym-
metry of the critical theory. Furthermore, these
methods can be readily extended'9 to chains of higher
spin and higher symmetry and hence to the quantum
Hall-effect localization transition. 20
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