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Density-Functional Calculations of the Cohesive Energy of Condensed Matter
in Very Strong Magnetic Fields

P. B. Jones
Department of Nuclear Physics, University of Oxford, Oxford OXl 3RH; England

(Received 10 June 1985)

The ground-state energies of atoms and of rhombohedral and body-centered tetragonal atomic
lattices have been calculated by density-functional theory for magnetic flux densities of 10' —10'
G. The cohesive energies derived are too smail to support a finite —electric-field boundary condition
at the polar cap in a pulsar magnetosphere.

PACS numbers: 97.60.0b, 95.30.Es, 97.10.Ld, 97.60.Jd

The polar-cap electric-field boundary condition in a
pulsar magnetosphere with positive corotational charge
density is determined by the cohesive energy of the
surface atoms. ' It is generally believed2' that the sur-
face electric field is finite. Variational calculations of
the ground-state energies of atoms and infinite linear
molecular chains in very strong magnetic fields gave
cohesive energies for the molecular chain, and there. -

fore for a stable three-dimensional atomic lattice, ade-
quate to support a finite electric field component
E Be0 at the neutron star surface. Recently, Mullers
recalculated the variational models of Flowers et al.
and found the original cohesive energies to be spuri-
ous as a result of serious errors in some of the numeri-
cal methods used. To find the correct boundary condi-
tion, the ground-state energies of atoms and of rhom-
bohedral and body-centered tetragonal atomic lattices
have been calculated for very strong magnetic fields.
There appear to be no previously published ground-
state energies for such systems. The method adopted
is that of density-functional theory.

The infinite linear molecular chain is formed from
nuclei spaced at intervals 2C on a line parallel with B.
Because of the axial symmetry of both atoms and
molecules, self-consistent solutions of the Kohn-Sham
equations have been obtained for these systems with
no substantial approximation apart from the restriction
to lowest Landau orbitals and the neglect of relativistic
corrections. The ground-state energies are very much
lower than those found by Flowers et al. and by
Muller.

The classes of lattice which appear likely to have the
optimum cohesive energy are determined by the
cylindrical form of the atomic Landau orbitals. The
cubic system has too much symmetry, while any class
containing the symmetry element C6 appears unsuit-
able becasue of the close proximity of the nuclei.
Thus the classes selected are the body-centered tetrag-
onal (D4&) and rhombohedral (D3d).

An elementary estimate of the rate of thermal emis-
sion of atoms at the surface, made by reference to ter-
restrial metals, shows that the cohesive energy neces-

sary to support a finite —electric-field boundary condi-
tion is E, & 2.8 keV at a polar-cap surface temperature
of 10 K. A surface temperature of 5 x 10 K appears
to be the minimum consistent with heating of the po-
lar cap by the reverse flow of electrons from bound-
free transitions or pair creation. ' Thus the cohesive
energies found here, for the relevant magnetic flux
densities, " ' are very clearly too small to allow a
finite-electric-field boundary condition.

The energy functional of the atomic lattice is

E[n] E jt d3r d3rKs

+Ez+E„,[n] —Jtd'r n(r) "'. (1)
5n

The electron density is n (r); Ez is the internuclear po-
tential energy, E„,the exchange-correlation function-
al, and EKs the ground-state eigenvalue of the poten-
tial

U= V+
' "'+)t d, ""',

hn fr —r'f
' (2)

expressed in field-dependent units of length and ener-
gy, (tc/eB)' =2.566x10 ' B~z' cm and e (tc/
eB) ' 2=0.5612B&'(2 keV, where B&2 is the magnetic
flux density in units of 10' G. The first set of terms,
the exchange energy, is identical with the high-field
limit of Danz and Glasser. ' The second set is an
empirical correlation energy9 chosen so that the
exchange-correlation functional obtained from e„,for
each occupied self-consistent atomic orbital cancels, as
far as possible, the Coulomb self-interaction of the or-
bital. "

The selected lattices can be formed by the assembly

in which V is the potential of the nuclei. We adopt a
local-density approximation for E„,in which the ex-
pression for the exchange-correlation energy per elec-
tron in a uniform charge-neutralized gas of density n
1s

e„,= (27m Inn +13.7n —37.8n )
—(0.0096 inn + 0.122), (3)
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{0,2A, + C) {2A, 2A, O) nearest-neighbor atoms. The eigenfunctions of U for
the unperturbed molecular chain are9

Q., =Re.(p)(2~) "'e '"'f„,(kz)

{0,0, 0) {2A 0, +C)

FIG. 1. The arrangement of parallel infinite linear molec-
ular chains in the xy plane for the body-centered tetragonal
lattice, with the Cartesian coordinates of nearest-neighbor
atoms. The quadrants of circles are the maxima of the func-
tions pRo„(p)which define the intersection regions of 8 for
each v.

of parallel infinite linear molecular chains, nearest-
neighbor separation 2A, suitably displaced in the z
direction. The body-centered tetragonal lattice is
shown in Fig. 1 with the Cartesian coordinates of

in cylindrical polar coordinates, where R 0, is the
lowest Landau orbital; v=0, 1, 2, . . . , v is the zone
number of the Bloch function f„,. Zero-point motion
of the nuclei is neglected. The electrons are complete-
ly spin-polarized (the cyclotron energy is their
= 11.588tz keV). Some eigenfunctions of the lattice
U are of great complexity because of the substantial
nonorthogonality of intersecting Landau orbitals (Fig.
1), but the deeply bound small-v states, which do not
intersect, are very well approximated by the
These properties are compatible with a local approxi-
mation in 8.

The potential U inside a cylindrical atomic volume
of radius po )A, length 2C, is found from the charge
density of nearest-neighbor atoms by Fourier-Bessel
transforms (order 0,3 for rhombohedral, and 0,4 for
body-centered tetragonal) and from a quadrupole ap-
proximation for more distant atoms. The eigenfunc-
tions f„,(k, z, 0) and eigenvalues e„,(k, 0) of the po-
tential

U„(z,8) =II p dp R „(p)U(r)

are computed, from a trial density distribution, for a

TABLE I. The atomic ground-state energies E, (Ref. 9) and the cohesive energies E, of
rhombohedral and body-centered tetragonal atomic lattices calculated for atomic numbers
and magnetic flux densities relevant to the stellar surface in radio pulsars. The atom with
Z = 26, B~2= 1, should have one electron in a two-node state (Ref. 9), not allowed for in
calculating the quoted E, . The bracketed E, has been obtained by extrapolation in Z and
8.

z
B

( 1() G)
E,

(keV)
Body-centered

tetragonal

E, (keV)

Rhombohedral

10

14

20

26

1

2
5

10
1

2
5

10
1

2
5

10

2
5

10

—10.70
—14.16
—20.24
—26.34
—19.09
—25.37
—36.76
—48.29
—35.48
—47.07
—68.37
—90.77

(—56.01)
—74.49

—108.18
—143.52

0.12
0.20
0.48
0.69
0.12
0.21
0.46
0.62
0.12
0.24
0.54
0.98

(0.12)
0.29
0.60
0.92

0.07
0.14
0.45
0.78

0.19
0.59
0.75
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number of discrete values of k and 8 and used to ob-
tain an estimate of E and an improved n (r). The Fer-
mi wave numbers kF„,(8) are found by requiring the
electron chemical potential to be independent of v and
8. Convergence to a self-consistent solution is rapid.
There is no approximation in the limit of small v
where U„becomes 0 independent. In the intersection
region, where U is a slowly varying function of posi-
tion, the method is equivalent to a local approximation
in p and 8 [pR o2„has a sharp maximum at
p= (2v+1)'/ ]. The intersection region of 8 is de-
fined, for each v, by the intersection of a circle of ra-
dius (2v+1)' 2 with circles of radius (2v +1)' 2 cen-
tered on the nearest-neighbor axes (Fig. 1). Because
of the lattice symmetry, intersection-region contribu-
tions to E~s and the total electronic charge can be di-
vided equally between the molecular chains concerned.

The atomic lattice energies found by variation of A,
v, and C have been subtracted from the atomic
ground-state energies E, of Ref. 9 to give cohesive en-
ergies (Table I). The optimum v are such that the
Landau orbitals just fill the xy plane (the density is one
independent state per 2n area). As an example, the
body-centered tetragonal lattice constants for Z =26
and 8&2= 5 are A = 6.4, C = 12.0, in the field-
dependent units defined above. As a result of the sub-
traction made in deriving E„errors caused by the re-
striction to lowest Landau orbitals and neglect of rela-
tivistic corrections, which are greatest at small v,
should cancel almost completely. Changes in the
exchange-correlation functional can cause substantial
shifts in E„butnot in E, . A consequence of the local
approximation in 8 made in the lattice calculations is
that, as for the Thomas-Fermi method, '6 the E, are

most probably overestimates of the true cohesive ener-
gies. In the limit of large A, the lattice energy ap-
proaches the known infinite molecular chain energy.

The investigation of possible structures has not been
exhaustive. Although structures of lower energy can-
not be excluded, the smallness of the cohesive ener-
gies found here for both rhombohedral and body-
centered tetragonal lattices points clearly to a zero sur-
face electric-field boundary condition for pulsars.
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