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Experimental Demonstration of the Role of Anisotropy in Interfacial Pattern Formation
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We impose anisotropy in modified Hele-Shaw experiments by engraving a grid on one of the
plates. Without anisotropy, the dynamics is dominated by tip bifurcations leading to a branched
ramified structure. With anisotropy, a dendritic pattern forms, in qualitative agreement with the

prediction of recent studies of local growth models.
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All manner of interfacial patterns have been ob-
served in various systems and they all seem to differ
greatly from each other. For instance, dendritic struc-
tures are detected in solidification of a pure under-
cooled liquid,!=? periodic cell structures in directional
solidification,* S Saffman-Taylor ‘‘fingers’’® in a Hele-
Shaw cell,” and self-similar branching structure in elec-
trochemical deposition.® In view of the variation in
patterns in these systems, no universality in their in-
terfacial dynamics appears to exist. However, we be-
lieve that underlying these seemingly unrelated
phenomena is a common principle, namely that growth
always occurs in two separate ways. Either parabolic
dendrites propagate in a way that is governed by aniso-
tropy, or, if the anisotropy is too small, a disorderly
behavior dominated by tip splittings results.

A major step toward revealing this principle that
governs the dynamics of the systems and the transition
from a regime of dendritic dynamics to one of branch-
ing dynamics was the development of the geometrical
model (GM)? and the boundary-layer model (IBM).10
These are rather simple local growth models inspired
by the models of diffusion-controlled solidification.
Their simplicity has permitted not only numerical com-
putation!!> 12 of the evolution of the interface, but also
the elucidation of a new selection mechanism® !°: For
a given finite anisotropy and low enough undercooling
there exists a discrete family of steady-state, shape-
preserving, needle-crystal solutions. The selected den-
drite is formed by side branches emerging from the
needle crystal of highest velocity.!?

Moreover, in the GM it has been shown’® that at a
critical value of anisotropy (for a given undercooling)

all needle-crystal solutions are unstable except the
selected one, which is marginally unstable with respect
to the tip-splitting mode. At higher anisotropy (for a
given undercooling) this mode is stable, and it is un-
stable below the critical anisotropy. Dendrites are ob-
served in the GM for this specific value of critical an-
isotropy (for a given undercooling). A similar analysis
has not been carried out for the BLM, but there is a
nonzero range of anisotropy for which dendritic
growth occurs in numerical simulations of the model.'*
Numerical simulations of the BLM and the GM show
that below a critical undercooling (for a given anisotro-
py) the tip evolves by broadening, flattening, and
eventually bifurcating into two new tips which contin-
ue to evolve in this fashion, giving rise to a succession
of tip bifurcations. The experiments which we report
here indicate the phase diagram presented in Fig. 1,
for interfacial dynamics of diffusion-controlled pro-
cesses, which is consistent with the results of the local
models.

We must bear in mind that the role of anisotropy
and the phase diagram outlined above have been
demonstrated in local models which are drastic simpli-
fications of the diffusion-controlled solidification, with
neglect of interactions between points on the interface
which are close in real space but not in terms of their
arc-length distance. The GM further neglects memory
effects associated with the diffusion field. Thus the
question arises: Are long-range memory effects suffi-
cient to give rise to dendritic behavior, or is the pres-
ence of anisotropy crucial not only in the GM and the
BLM, but in nature as well?!’

The purpose of this paper is to report the first quali-
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FIG. 1. Preliminary estimated phase diagram for the
Hele-Shaw experiment with anisotropy. The points
A,B,C,D indicate the values corresponding to the patterns
shown in Fig. 2.

tative experiment to demonstrate the role of anisotro-
py in interfacial dynamics. Our experiment indicates
that these ideas are not an artifact of the approximate
nature of the GM and the BLM, but can be a universal
feature of interfacial dynamics. To demonstrate the
role of anisotropy in interfacial pattern formation we
introduce anisotropy in a modified version of a Hele-
Shaw experiment by grooving a lattice on one of the
plates. Doing so, we observe the formation of den-
drites with parabolic tip and side branches similar to
those observed in solidification. These are not
steady-state solutions, in the sense of having constant
growth velocity, but their shape does seem to be time
invariant. Moreover, for a given driving force, as we
lower the anisotropy we observe tip bifurcations which
demonstrate the transition from dendrites to branching
as illustrated in Fig. 1. On the basis of our experi-
ments, we postulate the following scenario for the
transition from dendritic structure to fractal structure
such as seen in diffusion-limited aggregation (DLA)'®:
For a given driving force there is a critical value of the
anisotropy below which the tip of the dendrite is un-
stable with respect to tip bifurcation. Consequently,
below the critical value the interfacial dynamics is
dominated by tip splitting. As we drive the system
further from equilibrium, in the absence of anisotropy,
both the period between successive tip bifurcations
and the minimum length scale decrease, giving rise to
a DLA-like structure in the limit of a very large driv-
ing force.!”

The Saffman-Taylor version of the Hele-Shaw ex-
periment consisted of an interface between two immis-
cible fluids with different viscosity. The fluids are
confined between two parallel closely separated plates.
When pressure is applied to the less viscous fluid, the

1316

interface is unstable and known to develop Saffman-
Taylor ““fingers”’.5 18

The mathematical model describing the dynamics of
the interface in a Hele-Shaw cell is the Laplace limit of
the full diffusion problem: The velocity field in the
viscous fluid is assumed to be two-dimensional and

proportional to the pressure gradient as®
v=(—b¥129)VP, (1)

where b is the plate separation and » is the viscosity.
Similarly, the interface velocity along its outer normal
direction (into the viscous fluid) is given by the pres-
sure gradient at the interface. Here we consider the
limit of incompressible fluids so that the pressure sat-
isfies the Laplace equation

vipP=0. 2)

A further assumption that the fluids are immiscible
leads to the inclusion of surface tension in the pres-
sure boundary conditions.

At infinity, in the more viscous fluid, P, =P,
where P, is the atmospheric pressure. The other
boundary condition is P, the pressure along the mov-
ing interface:

P,=P,—dok, 3)

where P, is the applied pressure in the less viscous
fluid,!® d, is the isotropic surface tension (in the ap-
propriate units), and « is the mean curvature of the in-
terface given by

k=1/R, +1/R,. )]

R and R, are the radii of curvature of the interface
parallel and perpendicular to the plane of the fluid,
respectively. Equations (1) and (2), together with the
boundary conditions given by Eq. (3), specify the
Hele-Shaw model. Note that this system is reminis-
cent of DLA with finite surface tension.?’ It differs
from the models of diffusion-controlled solidification!!
in three aspects: The pressure replaces the tempera-
ture field, the diffusion equation is approximated by
the Laplace equation, and there is no anisotropy.

Next we describe the results of our version of the
Hele-Shaw experiment. The experiment was done by
application of pressure at the center of the cell in a
manner similar to that of Patterson.?! We used glycer-
ine (94%) dyed with food color as the viscous fluid
and air as the less viscous fluid. The bottom plate is
circular with radius 25 cm. On this plate we engraved
a regular sixfold lattice of grooves with depth
b;=0.015 in., width of 0.03 in., and edge-to-edge
separation of 0.03 in. We varied the effective aniso-
tropy, «, by changing the spacing by between the two
plates; « is then defined by

a= bl/bO' (5)
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The typical range is from a«=0.1 to a=1. The pres-
sure was applied from a very large (5-gal.) pressure
reservoir. The typical range is from P =10"2 atm to
P=10"1! atm. In Fig. 1 we show a preliminary esti-
mate of the phase diagram based on the results of the
experiment. When the driving force is very small for a
given anisotropy o we observe faceted growth [Fig.
2(a)]. The interface includes flat faces that advance
one layer at a time via the propagation of kinks. This
regime will be described in detail in a forthcoming pub-
lication.?? In the next regime the dynamics of the in-
terface is dominated by the tip-bifurcation instability
similar to that observed in the local models [Fig. 2(b)].
We note that in the circular geometry?! there is no sta-
bilization effect of the walls against tip splitting, in
contrast to the case of the channel geometry.?>2* In
our cell we were only able to observe a few tip-splitting
bifurcations. We think that in a much larger cell the
cascade of tip bifurcations will give rise to a ramified
branching structure that will approach a DLA-like frac-
tal dimension on large length scales. In order to show
that, we have repeated the experiment without a
grooved lattice on the bottom plate. At high pressure
we have observed a ramified structure and measured a
fractal dimension near to that of DLA% (D ~1.7).
This observation gives a qualitative understanding of
the fractal dimension of DLA as a limiting process of
successive tip bifurcations. In Fig. 2(c) we see the
symmetric ‘‘snowflake’’ observed above the tip split-
ting = dendritic transition. As we increase the pres-

(8) (b)
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FIG. 2. The various patterns observed in the Hele-Shaw
experiments with anisotropy. (a)-(d) correspond to points
(A)-(D) in Fig. 1, respectively, and show (a) faceted
growth; (b) tip splitting; (c) needle crystals; (d) dendrites.
The plate is 25 cm across.

sure even further we observe the appearance of side
branches on the dendrites and the radius of curvature
of the tip of the dendrites is reduced [Fig. 2(d)], again
in agreement with the prediction of the local models.
We emphasize that, as seen in Fig. 2, the size of the
dendrites and the spacing between the side branches is
not the lattice spacing.

We can carry the analogy between the Hele-Shaw
experiment and solidification even further. In order to
find a Hele-Shaw analog of direction solidification we
have introduced a ‘‘lifting version’’ of the Hele-Shaw
experiment. Here, instead of applying pressure to the
less viscous fluid, we lift the upper plate at the less
viscous side (air, in our experiment) at a given rate.
Intuitively, it is clear that by lifting we impose a pres-
sure gradient which is analogous to the imposed tem-
perature gradient in directional solidification. To see
this, we recall that by the lifting, b in Eq. (1) becomes
(at a given time) a function of x—the distance from
the pivot—and is of the form

b(x)=by+bpx/l; x << (6)
Equation (2) is replaced by

V2P +(2/8)9P/ax=0, @)

which is the equation of motion for a difussion process
in a frame moving with velocity 2D/, where D is the
diffusion constant. R, in Eq. (4) has the following x
dependence:

R, =c/b(x)=1(c/by)(1—x/0), ®)

where ¢ and by are constants, so that the pressure at
the interface [Eq. (3)] becomes

Ps—_—Pl_dobo/C—do/R“—(dobo/cc)x. (9)

These equations have the same form as the equations
describing directional solidification in the quasistatic
limit.> In Fig. 3 we show some results of the interfa-
cial dynamics in the lifting experiment.

In this experiment we have used a bottom plate with
a square lattice grooved on it, with grooves of width
0.03 in. and depth 0.015 in., separated by 0.03 in. We
control the velocity of lifting by using a variable-speed
motor. In Fig. 3(a) we show the resulting ‘‘fingers’’ at
low velocity?® (about 0.5 cm/sec; the scale is 20 cm).
As we increase the velocity (by increasing the rate of
lifting) we observe the array of dendrites shown in Fig.
3(b). The spacing of the dendrites depends on the lift-
ing rate—faster lifting gives smaller spacing—and on
the initial plate spacing. The velocity is about 15
cm/sec and the wavelength is about 2 cm. Finally, we
emphasize that, similarly to the previous experiment,
in the absence of anisotropy the interface dynamics is
dominated by tip bifurcations. The resulting pattern is
shown in Fig. 3(c) (the portion shown is of width 20
cm). We note that for small anisotropy (large spacing)
we observe patterns similar to those of the numerical
simulations of Vicsek?’ and Jensen.?® We claim that
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(v)
FIG. 3. The lifting Hele-Shaw experiment. (a) ‘“‘Fingers”

at low velocity. (b) Branched ‘‘fingers’’ at higher velocity.
(c) Array of dendrites with imposed anisotropy.

the use of a square lattice in the simulations in these
references provided weak anisotropy.

In summary, we have described qualitative experi-
ments which demonstrate the role of anisotropy in in-
terfacial pattern formation. This experiment proves
that anisotropy is truly essential to the formation of
dendrites and not an artifact arising from the approxi-
mate nature of the local models.!"12 Other experi-
ments, which study the effect of impurities on the tip
bifurcation instability and impose anisotropy by use of
liquid crystals as viscous fluids, are in progress. Quan-
titative detailed measurements of the phase diagram
will be reported in a forthcoming publication.??
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FIG. 2. The various patterns observed in the Hele-Shaw
experiments with anisotropy. (a)-(d) correspond to points
(A)-(D) in Fig. 1, respectively, and show (a) faceted
growth; (b) tip splitting; (c) needle crystals; (d) dendrites.
The plate is 25 ¢m across.
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FIG. 3. The lifting Hele-Shaw experiment. (a) ‘“‘Fingers”
at low velocity. (b) Branched ‘‘fingers’ at higher velocity.
(c) Array of dendrites with imposed anisotropy.



