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ceases to apply.
However, we argue here that df can be finite when

d, 2 and the Einstein relation [Eq. (2)] is valid also
for d, ~ 2. This will be the case if the exponent x in
Eqs. (1) and (2) is interpreted as the exponent charac-
terizing the resistance between the two bars3 5 of size
r~ ' separated by a distance r and not as interpreted
by Ref. 1 as the resistance between two sites. Both ex-
ponents are the same for finitely ramified fractals. 6

However, for infinitely ramified aggregates character-
ized by d, ~ 2 the two exponents are not the same in
general. 6 This interpretation of x allows x=0 for
d, =2 and d„=df=finite. Also for d, & 2 it allows
x ( 0, so that Eq. (2) is still valid.

We present three examples for which d, ~ 2 where
Eqs. (1) and (2) are valid and d~ is finite. The sim-
plest example is provided by compact clusters of fractal
dimension df = d. For this case clearly d„=2,
x = 2 —d, and from d, = 2df/d„ it follows that d, = d
and both Eqs. (1) and (2) are valid. Another example
is the family of exact fractals studied in Ref. 3. This
family includes the case d, = 2, for which df is found
to be finite. Finally, in the following we present a
family of random clusters with d, ~ 2 for which Eqs.
(1) and (2) are valid and df is finite when we use our
interpretation of x.

The model is a family of random clusters, without
loops (trees) and without dead ends, embedded on a
Cayley tree with coordination number n=3. In this
model we generate trees with adjustable df ~ 2. Let
P(l) =a/l be the probability that a site in generation
l —1 will grow to two sites in generation l, and
1 —P ( l) be the probability that it will grow to only one
site. The expected number of sites that grow from one
site in the (l —1)st generation is 2&&P(l)+ lx [1
—P(l)] = 1+P(l). Thus the total number of sites
8 ( l) in the l th generation is

I
8(l) = [1+P(l')] = l, 1 » 1, (3)

Range of Validity of the Einstein Relation

In a recent Letter' a relation2 between the fractal
dimension d&, the fracton dimension d„and the resis-
tivity exponent x was considered:

dg = d, x/(2 —d, ).
The author concludes from this relation that (i) when
d, 2, df ~ and the structure is collapsed in all
dimensions, and (ii) for d, & 2 the Einstein relation

d„=2df/dt, d, = d(. (4)

These results are generalizations of the results of dif-
fusion on linear chains2 which are obtained when one
substitutes dt = 1 in Eqs. (4). It should also be noted
that Eqs. (4) and the results d„=df (1+1/d, ),
d, =2dt/(dt+1) found recently for finitely ramified
clusters without loops are special cases of a general re-
lation given by Havlin et al.
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from which the total mass is M( l) —
hatt,

,B ( l')
a+1 —d—l +t —= 1 '. Since trees grown on a Cayley tree have

the property that r —Jl, it follows that
df = 2dt =2(cx+ I) ~ 2 (n ~ 0). The diffusion on
these trees was calculated exactly and found to be
(l2) —t. Thus one finds (r4) —t or d„=4 and

d, =2df/d„= df/2= dt. This result, d„=4, can be ob-
tained also from the Einstein relation, Eq. (2). Let
p(l) be the resistance between generation 1 and a!I
sites in generation l, and let pt(l) be the resistance
between one site in generation l and a single site in

l = 1. Then p ( 1) = p t ( l)/ l ', since l ' represents
the effective number of parallel paths to the lth shell.
But clearly p t ( l) —l (no loops!), so that p ( l)

2(dl 1) 4 —d—R /R ' —R f —R". Substituting x = 4 —d~
in Eq. (2) we obtain d„=4 as found exactly, indepen-
dently. 6 Notice that if these fractals are embedded in a
dimension d, satisfying d ( d, (d, is the upper critical
dimension for this model) then
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