Range of Validity of the Einstein Relation

In a recent Letter¹ a relation² between the fractal dimension d_f , the fracton dimension d_s , and the resistivity exponent x was considered:

$$d_f = d_s x / (2 - d_s). \tag{1}$$

The author concludes from this relation that (i) when $d_s \rightarrow 2$, $d_f \rightarrow \infty$ and the structure is collapsed in all dimensions, and (ii) for $d_s > 2$ the Einstein relation²

$$d_{w} = d_{f} + x \tag{2}$$

ceases to apply.

However, we argue here that d_f can be finite when $d_s \rightarrow 2$ and the Einstein relation [Eq. (2)] is valid also for $d_s \ge 2$. This will be the case if the exponent x in Eqs. (1) and (2) is interpreted as the exponent characterizing the resistance between the two bars³⁻⁵ of size r^{d-1} separated by a distance r and not as interpreted by Ref. 1 as the resistance between two sites. Both exponents are the same for finitely ramified fractals.⁶ However, for infinitely ramified aggregates characterized by $d_s \ge 2$ the two exponents are not the same in general.⁶ This interpretation of x allows x = 0 for $d_s = 2$ and $d_w = d_f =$ finite. Also for $d_s > 2$ it allows x < 0, so that Eq. (2) is still valid.

We present three examples for which $d_s \ge 2$ where Eqs. (1) and (2) are valid and d_f is finite. The simplest example is provided by compact clusters of fractal dimension $d_f = d$. For this case clearly $d_w = 2$, x = 2 - d, and from $d_s = 2d_f/d_w$ it follows that $d_s = d$ and both Eqs. (1) and (2) are valid. Another example is the family of exact fractals studied in Ref. 3. This family includes the case $d_s = 2$, for which d_f is found to be finite. Finally, in the following we present a family of random clusters with $d_s \ge 2$ for which Eqs. (1) and (2) are valid and d_f is finite when we use our interpretation of x.

The model is a family of random clusters, without loops (trees) and without dead ends, embedded on a Cayley tree with coordination number n=3. In this model we generate trees with adjustable $d_f \ge 2$. Let $P(l) = \alpha/l$ be the probability that a site in generation l-1 will grow to two sites in generation l, and 1-P(l) be the probability that it will grow to only one site. The expected number of sites that grow from one site in the (l-1)st generation is $2 \times P(l) + 1 \times [1 - P(l)] = 1 + P(l)$. Thus the total number of sites B(l) in the *l*th generation is

$$B(l) = \prod_{l'=1}^{l} [1 + P(l')] = l^{\alpha}, \quad l >> 1,$$
(3)

from which the total mass is $M(l) \sim \sum_{l'=1}^{l} B(l')$ $\sim l^{\alpha+1} \equiv l^{d_l}$. Since trees grown on a Cayley tree have the property that $r \sim \sqrt{l}$, it follows that $d_f = 2d_l = 2(\alpha+1) \ge 2$ ($\alpha \ge 0$). The diffusion on these trees was calculated exactly⁶ and found to be $\langle l^2 \rangle \sim t$. Thus one finds $\langle r^4 \rangle \sim t$ or $d_w = 4$ and $d_s = 2d_f/d_w = d_f/2 = d_l$. This result, $d_w = 4$, can be obtained also from the Einstein relation, Eq. (2). Let $\rho(l)$ be the resistance between generation 1 and all sites in generation l, and let $\rho_1(l)$ be the resistance between one site in generation l and a single site in l=1. Then $\rho(l) = \rho_1(l)/l^{d_l-1}$, since l^{d_l-1} represents the effective number of parallel paths to the *l*th shell. But clearly $\rho_1(l) \sim l$ (no loops!), so that $\rho(l)$ $\sim R^2/R^{2(d_l-1)} \sim R^{4-d_f} \sim R^x$. Substituting $x = 4 - d_f$ in Eq. (2) we obtain $d_w = 4$ as found exactly, independently.⁶ Notice that if these fractals are embedded in a dimension d, satisfying $d < d_c$ (d_c is the upper critical dimension for this model) then

$$d_{\mathbf{w}} = 2d_f/d_l, \quad d_s = d_l. \tag{4}$$

These results are generalizations of the results of diffusion on linear chains² which are obtained when one substitutes $d_l = 1$ in Eqs. (4). It should also be noted that Eqs. (4) and the results $d_w = d_f(1+1/d_l)$, $d_s = 2d_l/(d_l+1)$ found recently for finitely ramified clusters without loops are special cases of a general relation given by Havlin *et al.*⁷

S. Havlin

Physical Science Laboratory Division of Computer Research and Technology National Institutes of Health Bethesda, Maryland 20205

Received 4 September 1984

PACS numbers: 05.40.+j, 05.60.+w, 61.40.Km, 64.60.Cn

¹M. E. Cates, Phys. Rev. Lett. 53, 926 (1984).

²S. Alexander and R. Orbach, J. Phys. (Paris) Lett. 43, 1625 (1982).

³D. Ben-Avraham and S. Havlin, J. Phys. A 16, L559 (1983).

⁴Y. Gefen, A. Aharony, B. B. Mandelbrot, and S. Kirkpatrick, Phys. Rev. Lett. **47**, 1771 (1981).

⁵S. Havlin, in *Kinetics of Aggregation and Gelation*, edited by F. Family and D. P. Landau (North-Holland, Amsterdam, 1984).

⁶S. Havlin, R. Nossal, B. Trus, and G. H. Weiss, to be published.

⁷S. Havlin, Z. Djordjevic, I. Majid, H. E. Stanley, and G. H. Weiss, Phys. Rev. Lett. **53**, 178 (1984).

Work of the U. S. Government Not subject to U. S. copyright