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Period-Doubling Systems as Small-Signal Amplifiers
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Near the onset of a period-doubling bifurcation, any dynamical system can be used to amplify
perturbations near half the fundamental frequency: The closer the bifurcation point, the greater
the amplification. An analytic expression for the frequency response curve is derived explicitly for
the driven Duffing oscillator. Results of analog simulations are presented to check the main
features of the theory. We propose that the superconducting Josephson parametric amplifier is an
example of this amplification process.

PACS numbers: 02.90.+p, 03.20. +i

A great many systems, representing a wide variety
of physical phenomena, are known to undergo period-
doubling instabilities. The goal of nonlinear dynamics
is to determine what such systems have in common,
irrespective of differences in the underlying physics.
The most familiar results about period-doubling bifur-
cations concern the so-called period-doubling cascade,
in which an infinite sequence of instabilities occur, cul-
minating in chaotic dynamics. Most of the theoretical
work has emphasized the dynamical behavior close to
the onset of chaos, or within the chaotic regime.
Researchers have found that several quantities obey
scaling laws' 8 which are reminiscent (formally, at
least) of scaling behavior observed in condensed-
matter critical phenomena. On the experimental side,
period-doubling sequences have proven to be fairly
common, having been observed in electrical, 9 '4 opti-
cal, t5 hydrodynamic, '6 chemical, '6 and biological sys-
tems. '7'8

This Letter concerns the behavior of dynamical sys-
tems near the onset of a single period-doubling insta-
bility, far from a chaotic regime. This topic has re-
ceived less attention then the period-doubling cascade,
despite the fact that the mathematics of bifurcation
theory tells us a great deal about the dynamics in such
a situation. '9 Recently, work on the effect of random
noise as a single instability is approached has shown
that new broadband lines are induced in the power
spectrum. 20 2' In effect, the input noise is greatly am-
plified, before the bifurcation, near frequencies where
new sharp spectral lines appear after the bifurcation.
Measurements on driven p-n junctions are in excel-
lent agreement with the theoretical predictions. 2'

The amplification of broadband noise at certain fre-
quencies suggests that small coherent perturbations
might also be amplified by systems near the onset of a
period doubling. The purpose of this Letter is to show
that this is indeed the case.

Our basic result is as follows. Consider any dynami-
cal system oscillating with period T, and suppose a
parameter is adjusted so that the system is just before
the onset of a period-doubling bifurcation. If one now
couples in a small, monochromatic perturbation at fre-

quency &o =Yr/T, the output of the system will have a
large component at to. The magnitude of this amplifi-
cation will grow substantially as the bifurcation point is
approached.

This result is independent of the specific dynamical
system studied; however, to illustrate the ideas in-
volved we focus on a specific example —the driven
Duffing oscillator,

x+ yx+ n x+ Px = A + Bcost,

where n, P, y) 0. The main advantages of focusing
on this system are (1) that the derivation of the basic
results can be kept reasonably brief, and (2) that we
can test these results easily on an analog computer
(see Fig. 1). As will be mentioned later, the deriva-
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FIG. I. Amplitude response V(o&) vs signal detuning fre-
quency b, , for analog simulation of Eq. (2). Data are shown
for three different parameter values, just before the onset of
a period-doubling bifurcation. The circles, squares, and tri-
angles correspond to successively smaller bifurcation param-
eters e.
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ij + yq+ [n+ 3Pxo ]'I) = A, cosc0t. (3)

We solve this using a Green's-function approach, so
that

~(I) =„,G(I, I') X cos~r' dk', (4)

where G satisfies Eq. (3) with the right-hand side re-
placed by the impulse 5(t —t'). Since this equation is
linear with periodic coefficients, an explicit construc-
tion of G can be performed by use of the results of
Floquet theory. 23 In particular, G is the sum of special
solutions Xk of the homogeneous problem, such that

I

Xk(r, r') = e " Pk(t) Qk(t'), k=1, 2,

where Pk, ok are 2m-periodic functions.
Physically, the Xk represent the response of the

(linearized) system to an impulse forcing at t = t'. Sta-
bility of xo requires that the response q be transient,
so that the Floquet exponents satisfy Repk & 0. A
period-doubling bifurcation occurs when one exponent
crosses the imaginary axis at p=i/2 Precisely . at the
bifurcation point, one of the exponents (pt, say) is
equal to i/2, and one sees from the last equation that
Xt is indeed 47r-periodic. Near the bifurcation,
pt = —a+ i/2 with e a very small positive number, and
Rept/Rep2 « 1. Consequently, G is dominated by
X&. If we neglect the contribution of the relatively
short-lived transient X2, Eq. (4) becomes

q ( I) =
~ e " ' )/I ( I) q ( I') Z cosco I' dt',

40 (5)

where

p(r) = e"/'Pt(t), q(t') = e " '0, (r'),

so that p(t+2m. ) = p(t) and (qt' 2+m) = ——q(I').
This last property implies that the Fourier expansions

tion can be generalized in several ways. Full details of
a general derivation will be presented in a longer com-
rnunication.

Equation (1) describes the motion of a damped,
driven particle subject to a single-well, anharmonic po-
tential. For small driving amplitude B, the particle ex-
ecutes 2m. -periodic motion. As B is increased, the sys-
tem undergoes a succession of period-doubling insta-
bilities, until the motion becomes chaotic. '2 We want
to focus on the behavior of x(t) when the system is
tuned just before the onset of the first period dou-
bling, and a second, low-amplitude driving force is ad-
ded at a frequency near the half-fundamental:

x + yx + nx +Px = 2 + B cost + A. costs t.

Let xo(t) be a stable 2m. -periodic solution to the un-
perturbed system (1). Then for small enough A. , the
deviation q = x —xo will be governed by Eq. (2) linear-
ized about xo'.

for p and q contain only odd harmonics'.

p ( I) X a eint/2

n odd
a n an~

where we have also taken et )) 1. This is a discrete
Fourier sum, and so the power spectrum is a sequence
of 5-functions:

s(n)= X,", a n ——"—a„.„4("+a2) 2

+5 ~ ——"+a . (6)
2

Qf course, the full power spectrum also includes the
sequence of 5 functions at integer frequencies due to
the basic oscillation xo.

As the period doubling is approached, e 0, and a
very large response at the signal frequency occurs for
small detuning A. Note that strong responses also oc-
cur at frequencies n/2+5, for n odd. Had the signal
been near a different half-integer frequency t0= m/2
+ 6 (m odd), Eq. (6) would hold with b replacing bt.

After the onset of the period-doubling bifurcation,
Rep) ) 0 and the 27'-periodic solution xo is no longer
stable. Equation (2) must now be analyzed by lineari-
zation about the new, stable 4m-periodic solution x.
Just after the bifurcation, one finds that one of the
new Floquet exponents is pi = —~, where e is a small
positive number —that is, the system is near the bifur-
cation point of a different type of instability (i.e., a
pitchfork bifurcation). A calculation of the power
spectrum for this situation reveals that S(Q) is again
a Lorentzian, varying as (e + 5 )

We emphasize that the derivation of Eq. (6) is based
on the linearized Eq. (3), which is valid for
~q~ && ~xo~. For small enough e and b, , however, the
response q can be relatively large, and a proper
analysis must include the nonlinear terms ignored in
Eq. (3).

To test Eq. (6), we have implemented the driven
Duffing oscillator on an analog computer. Having set

q (I') = g b eimt/2 b
m odd

The integral appearing in Eq. (5) is readily evaluat-
ed, since the integrand is the product of exponential
and periodic functions. With use of the expansions for
pand q, Eq. (5) becomes

I

+ (I) ) e
—s(t —t ) g a b ei(nt+ mt )/2A. cost0

n, m

For co = —,
' +6, with 6 small, only the m = +1 terms

contribute significantly, with the result

e
—iht

v)(t) = X —,
' Xa„e'"' ' '

. + c.c. ,(e —th)
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the parameters so that the system (1) is close to the
onset of the first period doubling, we added a small
signal with to= —', +b, . In Fig. 1 we plot the linear
spectrum V(to) =JS (co) versus frequency difference
b„, for three different values of bifurcation parameter

The data have been normalized to the input-signal
strength, so that the ordinate is the factor by which the
input-signal amplitude is amplified. (The power gain is
given by the square of the ordinate. ) Qualitatively, we
see that the response curves grow and sharpen dramat-
ically as e decreases. Moreover, the data fit quite well
to the square root of a Lorentzian (solid curves). If
Eq. (6) is correct, the height-width product of these
response curves should be independent of e. Using
the X2 fits shown, we obtain height-width products of
0.154, 0.150, and 0.146, for the circles, squares, and
triangles, respectively.

The analysis based on Eq. (2) can be extended in
three important ways. 2 First, the results extend to
general dynamical systems x=F(x) near a period
doubling. Second, the unmodulated system may be a
self-oscillating (i.e. , autonomous) system. Third, the
modulation A. coscot need not enter additively, as in Eq.
(2), but can enter instead as a parametric modulation.
We also remark that an entirely analogous analysis
holds near the onset of instabilities other than period
doublings. For example, before a Hopf bifurcation,
corresponding to an instability in which the (unper-
turbed) system begins to oscillate at a second indepen-
dent frequency 0, amplification of small signals at fre-
quencies near 0 can occur.

What we propose, then, is this: If one builds any
dynamical system that oscillates with frequency f, and
this system is tuned near a period-doubling instability,
then coupling in of a small signal at a frequency near
fj2 will result in a large response of the system at the
signal frequency. In view of the generality of this
result, and the large number of systems known to
display period-doubling instabilities, this proposition
could be tested quite readily by experiments.

What are the practical advantages of this method of
amplification? This remains an open question; howev-
er, consider the superconducting devices called singly
degenerate parametric amplifiers, based on the
Josephson-junction technology. Introduced a decade
ago, these devices were proposed as attractive candi-
dates for low-power microwave amplifiers.
Researchers have reported that the parameter condi-
tions for a period-doubling instability are closely relat-
ed to the conditions for good gain. 26 28 The theoretical
understanding of this relationship is based on the
specific analysis of the resistively shunted Josephson-
junction model. Indeed, based on calculations like the
one presented here, we can show that the parameter
values for maximum gain coincide with the onset of
period doubling in the singly degenerate Josephson

amplifiers. Viewed in a larger context, we claim that
this is but one example of the general amplification
mechanism discussed in this Letter.
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