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It is demonstrated that a nonlinear Schrodinger equation with certain nonlinearities allows for an
existence of multistable singular solitons (i.e., singular solitons with the same carried power but dif-
ferent propagation parameters). In nonlinear optics, these solitons may exist in the form of either
short bistable pulses, or bistable self-trapping (both two- and three-dimensional).

PACS numbers: 42.65.Bp, 03.40.Kf

In this Letter we demonstrate that for a certain class
of nonlinearities, the soliton solution of the (general-
ized) nonlinear Schrodinger equation becomes multi-
stable. This implies that more than one amplitude pro-
file and speed of propagation of a singular soliton may
exist for the same amount of total power carried by the
soliton. The existence of multistable solitons is related
to the type of dependence of nonlinear susceptibility
on the intensity of light. For example, the multistable
soliton waves cannot be observed in a Kerr-type non-
linear medium; they may exist only either if the non-
linear component of the susceptibility as function of
intensity is changing its sign or its derivative has a suf-
ficiently sharp peak (e.g. , it is a step-like function).

The soliton bistability may result in such effects as
bistable (or multistable, in general) self-trapping of
light in media with nonlinear refractive index, as well
as bistable propagation of short soliton pulses in non-
linear optical fibers, since both of them may be
described by the same nonlinear equation. Both of
these effects may be viewed as an ultimate manifesta-
tion of multistable wave propagation since they are
based on the simplest possible propagation configura-
tion. They may also provide new opportunities in the
field of optical bistability. Indeed, for example, a bi-
stable self-trapping of light provides a potential for an
optical bistable device entirely free from any cavity or
Fabry-Perot resonators, ' single nonlinear interfaces or
nonlinear wave guides formed by the nonlinear inter-
faces, 3 retroflection self-action effects, 4 four-wave
mixing, 5 etc. On the other hand, since the propagation
of singular pulses in a homogeneous nonlinear medi-
ums 7 and in nonlinear fiber wave guidess is also
governed by a nonlinear Schrodinger equation, these
soliton pulses in the system with an appropriate non-
linearity may provide the first (to the best of our
knowledge) known opportunity to attain a temporal
(or dynamic) bistability as opposed to all known kinds
of optical bistability which have been so far formulated
in terms of steady-state regimes. The very notion of
steady-state optical bistability comes into inevitable
contradiction with the applications, most of which as-
sume fast pulse regime of operations. When exploited
in a dynamic regime, such effects still demonstrate
hysteretic behavior which, however, can hardly be

identified with the original "adiabatic, " steady-state
hysteresis. The dynamic hysteresis is more strongly
affected by the relaxation processes than by steady-
state bistable states, especially when the total switching
cycle has the duration time of the same order as relax-
ation times. The truly dynamic (or temporal) bistabili-
ty discussed in this paper is based on bistable pulse
shapes (as well as on bistable duration of the pulses)
and offers a way to resolve this contradiction.

Consider the generalized nonlinear Schrodinger
equation for the complex amplitude of field E in the
form

2i BE/Bz+ B'E/Bx'+ Ef( I E I') = 0,

where f( I E I ) is an arbitrary function of the inten-
sity IElz with f(0) =0. When f(IEI)'=o'IEI' (o
=const), Eq. (1) is the so-called cubic nonlinear
Schrodinger equation7 9 " which corresponds to Kerr
nonlinearity in optical propagation. In the case of
two-dimensional self-trapping, " z is the normalized
axis of soliton propagation and x is the normalized
transverse axis (both of them are dimensionless and
correspond to the real coordinates z and x multiplied
by the wave number k= ton/c). In the case of one-
dimensional pulse propagation along the zi axis in a
slightly dispersive medium with a nonlinearity
ft ( I E Iz), the equation of propagation iss s "

2iBE/Bzi+ (du/des)u 'BzE/Bgz

+ kEf1 ( I E I

2 ) =0 (1')

where g = t —zt/~; ~ = dto/dk is the group velocity of
linear propagation. Equation (1') can readily be
transformed into Eq. (1) by proper scaling, e.g. , by as-
suming

zt = (z/k') (dv/dto); g = x/kv;
f, =fk(du/d~).

In both cases f'is proportional to the nonlinear (i.e. ,
intensity-dependent) component Ae of the dielectric
constant e of the medium. The nonlinear Schrodinger
equation is obtained from the Maxwell equations in
the conventional slowly varying envelope approxima-
tion (i.e. , BE/Bz (( B E/Bx ) which implies either
small (quasioptical) diffraction [Eq. (I)] or relatively
small dispersion [Eq. (1') l.
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The stationary solutions (in particular, singular soli-
tons) of Eq. (1) have a nonvarying intensity profile,
8 I E I /Bz = 0, i.e. , such solutions are written as
E(xz) = u(x)exp(i5z/2+i@), where @=const and 5
is the (unknown) real speed (or propagation constant)
of the soliton. Thus the equation for the real ampli-
tude u(x) is

0.4

0.3

0.2
d u/dx + u [f(u ) —5] =0 (2)

whose soliton solution must satisfy the condition
u 0 as ~x ~

~ in order for the total power
P= I uzdx to be limited. Under this condition the
first integral of Eq. (2) is

(du/dx)'=2„t u[5 —f(u')] du, (3)

integration of which yields
i

x= J"' [5—f(u')] d(u ) ' du.
i

(3')

where

F(I) =I ' f(I) dI, F(0) =0, (5)

i.e. , P is determined immediately by f(I) and 5. In
Eq. (4), I (5) is the peak intensity of the soliton; it is
defined as the minimum positive root of the equation
F(I) =5. The multistability of a singular soliton is
realized when the function 5 (P) which is implicitly
determined by Eq. (4) becomes multivalued.

It is readily shown that a "positive" Kerr-type non-
linearity (i.e., f=nI, where o. & 0), results only in a
one-valued single soliton (with 5~P2), (see Fig. 1,
curve 5), whereas "negative" Kerr-type nonlinearity
(a ( 0), as is well known, "does not provide any soli-
tons at all. In this respect, one has to notice once
again that multistable solutions discussed in this paper
are still "conventional" singular solitons in the sense
that they are solutions of the nonlinear Schrodinger
equation (1) with a nonvarying amplitude profile [see
the text preceding Eq. (2)] in an infinite (or semi-
infinite) medium. On the other hand, it is known'2
that the waves in nonlinear Fabry-Perot (or ring) reso-
nators, excited by a beam of light incident on one of
the semitransparent mirrors, exhibit multistable

This determines implicitly the soliton amplitude pro-
file u (x) for each particular 5 and f(u2). The integral
in Eq. (3') can be analytically evaluated only for some
particular class of functions f(u2), but this may not be
done in the case of arbitrary f(u2). In order to evalu-
ate a total power P, however, the explicit form of u (x)
does not need to be known. Indeed, by the use of Eq.
(3) and the introduction of I= u2 = ~E ~2, it is shown
that

6 PQA/I0
FIG. 1. Propagation constant 5 vs the total po~er P car-

ried by the soliton. Curves 1—5 correspond to various func-
tions of nonlinearity: 1, step function, Eq. (8); 2,
f= apI + a3I —a4I (a2, a3, a4 & 0); 3, Eq (1.4), with

aia3 ( a2S„; 4, Eq. (14), with aia3= ajS„; 5, Kerr non-
linearity, f~ I. The broken lines in curves 1—3 correspond
to the unstable solitons. In the inset, the intensity profiles
I (x) are depicted of solitons that carry the same power but
correspond to different branches of function 5P; U, upper
branch, and L, 1o~er branch.

transverse structure. In terms of an infinite medium it
mould correspond to propagation with periodic boun-
dary conditions and with a driving term (i.e. , incident
beam) at each boundary. These multistable structures
are substantially attributable to the resonant nature of
the system rather than to the type of nonlinearity or to
the pertinent soliton solutions. For example, bistable
profiles exist' in resonators even with a "negative*'
nonlinearity, whereas the same nonlinearity does not
allow existence of solitons in an infinite medium at all.
In fact, none of the nonlinearities considered in Ref.
12 can produce the multistable solitons discussed in
this paper. It must be noticed also that the transverse
structure of the field in resonators' (in particular, the
intensity profile) varies along the axis of propagation,
in direct contrast to singular solitons.

The absence of multistable solutions for Kerr-type
nonlinearity (f~ I) also holds for any other nonlinear-
ity with f~Ii", where iu, &0 (but p, A2). The non-
linearity f~ I plays a special role in the two-
dimensional propagation in the sense that in this case
the total energy carried by any singular soliton is the
same regardless of its spatial profile and propagation
constant. Indeed, for f'= I2/I02, where Io= const, the
intensity profile I(x) and propagation constant 5 are
defined 3 from Eq. (3'):

I(x) = I /cosh(2I x/Ioj3), 5=Iz/3Io2,

where the maximum intensity of the soliton I is an
arbitrary constant, the total power is Po=mIoJ3/2.
One may also show using Eq. (4) that a "positive"
nonlinearity with saturation, i.e. , f= aI(1+ I/Io)
where a and Io are some positive constants, fail to pro-
duce multistable solitons. Such a nonlinear suscepti-
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f(I) =0, if I & IP', f= b„, if I & I11, (8)

where lo and 6 are some positive constants. Substitut-
ing (8) into (4), one gets

r

p(5) = '0 1 1 + arcst~V'
(9)gl/2 I p pl/2 (I p)1/2

5p=—
The function p vs P determined by (9) is a two-valued
function (Fig. 1, curve 1) for any P & P„,= 3.44IO/b, '/ with p(P,„)= 0.21. Another example
is given by the nonlinearity

f(1)=0, ifl & Io,

f(I) =b, (1—Ip2/I2), if I & Io.
(lo)

f(1) is now a continuous function as opposed to Eq.
(8). However, its derivative df'/dl is still discontinu-
ous. The total power in Eq. (4) is now

Io 1 1 arccosp'/
p = 5 (11)g1/2 1 p p1/2 (1 p)1/2

which essentially represents the same kind of behavior
as Eq. (9), i.e. , provides a two-valued soliton p(P) for

bility with saturation may be attributed to various
processes, in particular to the interaction of appropri-
ately tuned near-resonant light with two-level atoms
(see, e.g. , Butylkin, Kaplan, and Khronopulo'4).
This, again, is contrary to the resonator systems, in
which this nonlinearity may cause multistability, ' in
particular, in the transverse structure. '2

One may note from Eq. (4) that in the case of arbi-
trary f(I), a constant 5 may be viewed as a first in-
tegral ("energy") of some system with a potential
F(l) [Eq. (5)l. The motion of this system in some p
domain can then be described by the equation

d2I/dp2+ 8d [F(l)]/dl =O,

where if p is interpreted as a "time, " and P(5) is a to-
tal "period" of oscillation of the system for any given
"energy" of excitation, 165. Indeed, the first integral
of Eq. (7) Orth potential 8F(I) is given as
(dl/dp)2=const —16F(l), where const may be con-
sidered as a "total energy. " Therefore, the "period"
P of the "oscillation" with a given amplitude I is
P=4 f (dl/dp) 'dl, which results in Eq. (4) with

0
const=165. Specifically, the case f~l2 (and there-
fore, F~ 12) corresponds to a "linear oscillator, " with
the period of oscillation P independent of its "energy"
5, i.e. , dP/d5 = 0 as suggested above.

In order to demonstrate the existence of a countable
set of states for the singular soliton (with more than
one state), we consider first the step nonlinearity:

any P & P«2 = 4.2810/'b, '/', with p(P„) = 0.26. In
these cases, the nontrivial branches of the function
P(5) tend to infinity as 5 0 and 5 6 (note that
the third, "trivial, " branch with 5 = 0, P arbitrary, cor-
responds to a nontrapped beam with I ( Io). This
suggests a bistability without hysteresis and is due to
the fact that the nonlinearity f(I) differs from zero
only for some finite I & Io. The same kind of soliton
bistability is exhibited by the system if either (i)
df(0)/dl & 0, but f(I) becomes positive at some I,
e g , w. h. en f= —atl+ a2I a3I—, where at, a2, a3 & 0
and 9ata3(2a2, or (ii) f(I) & 0 in the vicinity of
I =0, but f(I) = o(I2); e.g. , f(l) = atl3 —a2I
(at, a2&0) or f(I)=atl (1+I/I11 ) ' (at, lo&0).
The latter nonlinearity may result from the three-
photon resonant absorption of light by two-level sys-
tems with saturation.

In order to attain truly hysteretic bistable behavior
[i.e., that characterized by S-shape steady-state curves
(see, e.g. , curves 2 and 3 in Fig. 1) which cause both"on" and "off" jumps between different branches of
the curve], the function f(I) must be positive at least
in some range 0 & I & 11 and have a distinct peak in
its first derivative df/dl in this range. The existence
of hysteretic jumps is secured if d5/dP = ~ (or
dP/d5 =0) for two (or more) discrete values of P (or
5), where dP/d5 is found from (4) as

dI'

d5

I

25 "o
F(d F/dl ) dl

(dF/dl)' [5 —F(l) ]'/'

(12)
The derivative dP/d5 is strongly affected by F"(I)
and therefore by f'(I); bistability may exist if
f'(0) ) 0, and if at some point I= I we havef"(I) =0 and f'(I) ) f'(0). As an example of such
a function, consider

f= atl+ a2l —a3I, (13)

where a1,a2, a3 & 0. S-shaped behavior of 5(P) (Fig.
1, curve 3) is possible if the following condition is sat-
isfied:

ata3/a2 & S„=O(1),
where S„ is some critical quantity; a rough estimate
gives S„—0.1-0.2. In the general case, the critical
situation, when the curve P(5) at some point 5 =5„
has dP/d5= d2P/d5'=0 (see, e.g. , Fig. 1, curve 4),
corresponds to the conditions

dP/d5„=0, 2(d F/dl )F= (dF/dl„)2 (15)

where I„ is the minimal solution of the equation
5,„=F(I„),which determines both 5„and the re-
quired parameters of the function F(I) and therefore,
f'(I). In the case when f'(I) = O(I2) at I=O, the
function 5 (P) forms a hysteresis if d2 f/dl2 ) 0,
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d3f/dl3 & 0, and d f/dl4 ( 0 at I=0, e.g. ,f= a2I + a31 —a4I (az, a3,a4 & Q). In such a case,
the lower (stable) branch of 5(P) corresponds to a
nontrapped beam (5 = Q) (see Fig. 1, curve 2).

The stability of each of the possible solitons all of
which correspond to the same total power P is an im-
portant issue. The small-perturbation analysis of the
spatial stability of multistable solitons in the case of
step nonlinearity (8) shows that the lower branch of
curve 1, Fig. 1 corresponds to the unstable solitons
and the upper corresponds to the stable ones; the trivi-
al solution (5=0) is stable for any P. This suggests a
general criterion for an arbitrary f(I), and therefore
5(P): The stable solitons are those for which
d5/dP & 0 and vice versa (see Fig. 1, curves 1—3). In
the future, it would be of considerable interest to
study a "collision" of two solitons that belong to the
upper and lower branches of the curve 5(P).

Bistable solitons may also exist in the case of three-
dimensional propagation. Stationary self-trapping of a
cylindrical beam, for instance, is governed by the
"nonlinear Bessell" equation [instead of Eq. (2)]:

d u/dr + (1/r)(du/dr)+ u[f(u2) —5]=0, (16)

where r is the radial coordinate in the plane normal to
z axis. For cylindrical beams, a Kerr nonlinearity,
f~ I, plays the same role as f~ I2 in the two-
dimensional case: For such a nonlinearity, the total
power of the beam does not depend on its size or its
peak intensity. Therefore, in order to attain a
nonhysteretic bistable soliton propagation of the kind
depicted by curve 1, Fig. 1, the lowest required degree
of nonlinearity at I 0 is fa: I2 [with fattaining some
maximum or saturation when I increases, e.g. ,f= nl (1+I /Io ) ']. Such a nonlinearity can orig-
inate from two-photon resonant absorption. '~ The
hysteretic characteristic curve 5(P) similar to curve 2,
Fig. 1, results from the nonlinearity of the form
f(l) = atl+ a21 —a31 (at, a2, a3 & 0), with the criti-
cal condition in the same form as Eq. (14) [but with
different S„=O(1) ].

In conclusion, the existence of multistable soliton
solutions of the generalized nonlinear Schrodinger
equation was demonstrated. In order for those soli-
tons to exist, the nonlinearity must satisfy some spe-
cial conditions, e.g. , its dependence on the light inten-
sity must have a range where it increases sufficiently
sharply. In nonlinear optics, these solitons may mani-
fest themselves either as singular pulses (e.g. , in non-
linear fibers) or self-trapped channels (in both two-
and three-dimensional cases). Bistable solitons
present the ultimate case of multistable wave propaga-
tion and may find an application in dynamic (tem-
poral) optical bistability and bistable resonator-free

self-trapping of light.
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