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Do Davydov Solitons Exist at 300 K'?
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The Davydov model for a one-dimensional protein, coupling the high-frequency amide-I vibra-
tion to longitudinal-acoustic phonons, is investigated by use of finite-temperature molecular
dynamics. Soliton dynamics is studied in both equilibrium and nonequilibrium situations. The ran-
dom thermal motions prevent self-trapping from occurring at temperatures of interest for transport
in real proteins.

PACS numbers: 85.15.8y, 71.38.+c
The understanding of energy transport along linear-

chain molecules is a long-standing problem that
remains of great interest. In the biological context, the
mechanism for transport along proteins of the free en-
ergy released by hydrolysis of adenosine triphosphate
(ATP) ( = 0.42 eV or 3350 cm ') continues to be in-
vestigated. Proteins consist of chains of hydrogen-
bonded peptide (H —N —C=O) groups; three such
chains in a helical arrangement define the n-helix
structure. In 1973 Davydov' proposed a mechanism
whereby the energy from ATP could be trapped and
transported in proteins as quanta of the intramolecular
C= 0 stretching mode (amide-I vibration) with exci-
tation energy = 1650 cm '. His proposal was that
amide-I vibrational energy might become self-trapped
through an interaction with low-frequency longitudinal
acoustic phonons which arises because the amide-I en-
ergy depends on the length of the hydrogen bond
between the peptide groups. Because of this interac-
tion, displacements of peptide groups in a small region
of the chain cause a reduction in the energy of the in-

i

tramolecular amide-I vibration in that region. For cer-

tain ranges of parameters, Davydov finds that this ef-
fect leads to self-trapping of amide-I energy, which
otherwise would be dispersed by dipole-dipole cou-
pling between neighboring molecules along the chain.
The localized spatial region where the energy is
trapped can propagate, and thus a solitonlike mechan-
ism for energy transport is possible. Since then con-
siderable work has been done on the Davydov soliton
theory. 2 Most studies have been done at zero tem-
perature, and little attention has been given to soliton
properties at biologically relevant temperatures
(T= 300 K).

Our purpose here is to report how the properties of
the Davydov model are affected by having the system
at finite temperature. We have added external damp-
ing and noise forces to Davydov's equations to
describe coupling the system to a thermal reservoir at
temperature T, thereby obtaining Langevin equations.
Our essential result is the following: At temperatures of
realistic interest for transport in proteins, the random noise
forces prevent Davydov self trappingPom -occurring Our.
evidence for this assertion follows.

Davydov's Hamiltonian is3

0= Q„E08„8„—JX„(8„+iB„+B„B„+i)+ g„[p„/2m+ —,
' iv(u„i +—u„) ]

+X,g„(u„~i—u„ i)8„8„. (1)

Here, B„and B„are creation and annihilation operators for quanta of intramolecular vibrations with energy Eo at
site n (the C= 0 stretch mode), u„and p„are the molecular displacement and momentum operators for the
molecule at site n, m and w are the molecular mass and intermolecular force constant, and I is the intersite transfer
energy produced by dipole-dipole interactions. The nonlinear coupling constant Xi arises from modulation of the
on-site energy by the molecular displacements. 4

To understand the dynamics arising from this Hamiltonian, Davydov3 makes the Ansatz for the state vector

ly(t)) = g„a„(t)B„exp{—(i/lt )g~ [p, (t)p, 7rj(t)uj]] l0), — (2)

where l0) is the ground-state vector. Since the part of lP) which depends upon the displacement and momentum
operators is a coherent state, one shows that

(p(t) lu„lp(t)) =p„(t), (p(t) lp„lp(t)) =~„(t)
By requiring that l Q ( t ) ) satisfy the time-dependent Schrcidinger equation, one shows that a„and p„must satisfy

i«. = —J(a.+i+ a.-i)+ ~i(P.+i —P.-i)a.
mP. = vv(P. +i 2P. +P. i)+&i(—la. +il' —l-a. il') (4b)
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To describe the interaction of the system with a
thermal reservoir at temperature T, we have added a
damping force and a noise force,

(5)

to (4b) for the molecular displacements. We have
chosen the correlation function of the random force to

and have verified numerically to high accuracy that
over sufficiently long time intervals this gives for the
mean kinetic energy

Even with the damping and noise forces included, Eqs.
(4) have a conserved quantity, g„~a„(t) ~

=const.
The interpretation of a„(t) from (2) as a probability
amplitude requires that within Davydov's theory the
value of this constant is unity:

Our equations involve the combination of (6) and
(7), which are the classical fluctuation-dissipation rela-
tion, with (4), which are obtained quantum mechani-
cally. The justification for doing this is that for param-
eter values near those appropriate for the n helix (see
below and Table I) a quantum of the highest-
frequency acoustic mode tee,„ is around 100 K. If we
solve the equations at 300 K, then the occupation
numbers of all phonon modes are rather accurately
given by the classical distribution, and in that situation
(7) is valid. The use of (7) for temperatures below,
say, 200 K would not be valid because of quantum
corrections to the phonon occupation numbers, but
such temperatures are not biologically relevant.

Davydov analyzes' 3 (4) by making approximations
which reduce it to the cubic nonlinear Schrodinger
equation. The self-trapped state of vibrational energy
and lattice displacements is described by the well-
known hyperbolic secant solution of this equation. He
has also extended the theory to account for thermal ef-
fects. Again a nonlinear Schrodinger equation is ob-
tained, but now with a temperature-dependent coeffi-
cient for the nonlinear term. Soliton solutions should
then exist for temperatures where this coefficient is
positive. Using parameters for the n helix (Table I),
we calculate from this theory that solitons should exist
up to T=370 K.

We have solved the set of stochastic differential
equations in (4)—(6) using techniques developed by
Greenside and Helfand. In our calculations, the norm
of the state vector is conserved to at least 5 parts in
1000. The simulations were done for a chain of 100
sites with periodic boundary conditions. The parame-

TABLE I. Parameter values.

w J X~ Xf to

(N/m) (cm ') (10' N) wJ (10 '3 s)

Discrete
Continuum
o, -helix'

5.0
13.0
13.0

20.0
31.2
7.8

0.75
0.48
0.62

2, 83
0.29
1.91

1.95
1.21
1.21

'Reference 2.

ters used in the results here are given in Table I. The
mass m was always taken to be 114 proton masses2
(m = 1.904 X 10 25 kG). The rate of spatial variation
of the variables is determined by the ratio Xt/wJ, as
given in the table. The quantity to in the table is
(m/w) '/2 and is the time unit used to nondimension-
alize the equations. The dimensionless value of I
used for most runs was 0.005.8 We varied I from
0.0025 to 0.05 and found no qualitative change in the
results described below.

Our results are presented by certain diagnostics.
One is "wave form" graphs: plots of ~a„~2 and the
"discrete gradient" p„+ ~

—p„q as functions of n at a
given t. A soliton is recognized as a maximum in ~a„~
and a minimum in P„+t—P„~ occurring together.
The second diagnostic is a "soliton detector": On the
(t, n) plane, we mark those times and positions where
both ~a„~2 exceeds a certain level (chosen to be 0.02)
and P„+t

—P„~ is negative. The temporal extent of
the marked regions shows how long solitonlike entities
can exist.

First, in Fig. 1 we show an example which verifies
that the equations without noise do possess the
coherent, localized, propagating solutions Davydov has
described. Fig. 1(a) shows the soliton-detector results
at a very low temperature, T= 0.01 K, with the param-
eters labeled "Discrete" in Table I and with random
initial conditions. One sees in Fig. 1(a) that several
solitons are nucleated, move along the chain, collide,
and coalesce so that eventually only one remains, and
it becomes pinned. The wave-form graphs in Fig. 1(b)
show the correlation of the maximum in ~a„~2 and the
minimum in p„+ &

—p„ t which characterizes the
Davydov soliton. This is clear evidence that solitons
can form in this system at zero temperature. Similar
results are obtained with the "continuum" parameters
in Table I, but the peaks are broader since the soliton
spreads over more lattice sites. (We note that the pin-
ning is sensitive to the value of Xt, decreasing it by
20'/o eliminates the pinning but still leads to soliton
formation. )

Fig. 2(a) shows the result of raising the temperature
to 300 K, with other parameters remaining the same as
for Fig. 1 and with random initial conditions. Forma-
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FIG. 1. Simulations at essentially zero temperature. (a)
Soliton-detector plot (see text for description). Time values
are in the dimensionless units given in Table I. Soliton nu-
cleation and propagation as predicted by Davydov's theory
(Ref. 3). The parameters are those labeled "Discrete" in
Table I, and the initial conditions are random. (b) Wave
form graph (see text for description) at t = 1200 time units
in the evolution shown in part (a).
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FIG. 2. Soliton-detector plots for simulations at T = 300
K. (a) Parameters other than temperature same as in Fig.
2 (a). (b) o.-helix parameters, Davydov-soliton initial condi-
tion (Ref. 3). (c) Continuum parameters, Davydov-soliton
initial condition.

tion and propagation of solitons is now seen not to oc-
cur; the random forces prevent the necessary correla-
tions between the two fields from occurring.

The spontaneous formation of solitons discussed
above may not be the correct process to consider. For
example the release of energy by ATP hydrolysis may
nucleate a soliton, and it could then propagate. To
check this possibility, we did nonequilibrium simula-
tions in which the Davydov soliton3 is the initial condi-
tion. It is then allowed to evolve under the influence
of the random noise forces. Soliton-detector results
from two such simulations are shown here; Fig. 2(b) is
done with a-helix parameters and Fig. 2(c) with con-
tinuum parameters. In both cases the noise forces cor-
respond to a temperature of 300 K. For both sets of
parameters the initial soliton is seen to disappear in a
few picoseconds. The filamentary black regions in
Figs. 2 (b) and 2(c) have a certain slope, which corre-
sponds to the sound velocity in the units used for the
calculation. This observation shows that the two sets
of excitations are propagating independently of each
other.

To be sure that our results do not depend on the

method of introducing temperature, we have carried
out another type of simulation. We use the equations
with the noise and damping terms included to prepare
the system close to the desired temperature. Then we
turn off the noise and damping, introduce a Davydov
soliton at the center of the chain, and continue the
evolution deterministically, using just (4) without (5).
We find that the evolution of the soliton is the same
without the random forces as it is with them; it disap-
pears within a few picoseconds.

To see how these results depend on the value of the
nonlinear coupling X~, we have done calculations using
values 10 times larger than the accepted value for the
n helix (Table I). For T= 300 K, a soliton present in
the initial state then lives for a time of 100—150 ps,
which is still a short time for biological purposes. In
addition, for these Xt values it is so tightly pinned to
the lattice that its usefulness for energy transport is
doubtful.

There is an alternative classical derivation of (4) in
which the sum g„~a„(t) ~

can have any value, deter-
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mined from the intensity of the amide-I vibration.
Semiclassical quantization then restricts it to integer
values. While we feel that the interpretation of a„(t)
as a probability amplitude is lost in this derivation, we
have carried out simulations in which the sum has
values up to ten. This does not change the nature of
the results; a soliton present in the initial state still
disappears in a few picoseconds.

Finally we emphasize that these results are not sen-
sitive to the precise temperature value. T= 300 K has
been used because that is close to biologically relevant
temperatures. Even though quantum effects would
make our simulations inaccurate at low temperatures
(see above) we have noted that noise forces corre-
sponding to T= 10 K are strong enough to destroy the
solitons. Thus, this is not a situation where small
changes in the parameters would change the results.

We interpret these results as showing that the origi-
nal proposal of Davydov, to form solitons by coupling
molecular excitations and acoustic phonons, does not
work at temperatures relevant to biological processes.
The random displacements produced by the thermal
motions are so much larger than the displacements
needed to form the coherent soliton pattern that the
solitons cannot be formed at these temperatures.

In spite of our results here, Davydov's fundamental
idea of forming solitonlike entities via nonlinear cou-
pling of two spatially extended oscillating systems is
still attractive, even though choosing one system to be
acoustic phonons is evidently not useful. The a-helix
structure is complex enough to provide other candi-
dates for coupling, some of which have sufficiently
high frequencies that thermal effects at 300 K would
be negligible. These possibilities are under investiga-
tion.
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