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Monte Carlo Studies of the Dynamics of Quantum Many-Body Systems
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We propose a least-squares-fit method to extract real-frequency correlation functions from
imaginary-time Monte Carlo data of a many-particle system. We apply it to the density correlation
function in a one-dimensional model of spinless fermions. The spectral functions thus obtained re-
flect accurately the particle-hole and the soliton-antisoliton excitations of the system in the respec-
tive limits of noninteracting and strongly coupled fermions. They are in qualitative agreement with
the available analytical results.

PACS numbers; 75.10.Jm, 71.10.+x
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In recent years, Monte Carlo (MC) methods have
become a powerful tool for the investigation of the
thermodynamics and static correlations of quantum
many-body systems. ' However, little progress has
been made so far in the development of MC tech-
niques that would allow the study of the real-time
dynamics of such systems. Recent attempts to simu-
late real-frequency2 or real-time3 correlation functions
directly have dealt only with the simplest (one degree
of freedom) model systems and have given reasonable
results only after an exceedingly large number of MC
steps. Also, Pade approximants have been used to
analytically continue imaginary-time MC data for
single —degree-of-freedom models. 4 Considering the
enormous amounts of computation time required, it is
difficult to use these methods for many-particle sys-
tems.

In the present work, we propose a method to extract
real-frequency self-correlation functions from the cor-
responding imaginary-time Green's functions of
many-particle systems that can be simulated by stand-
ard quantum MC techniques. The starting point of
our approach is the integral equation, s

G(~) = m '&/dco(1+ e &") 'e '"$"(co),

which relates the imaginary-time Green's function of
two operators, A and 8, at temperature T,

Here, A (r) =—exp(iHt)A exp( —iHt), 8 is the Hamil-
tonian of the system, and

(. . .) —= Tr[exp( PH). . .—]/Tr [exp( —PH) ]

denotes the thermal average. Although (3) itself is
not of physical interest, it is directly related to the
physically relevant linear response functions. For ex-
ample, the time Fourier transform of S( t)
—= (A ( t)8 (0) ) is given by

S(co) =2(1+e i'") 'P" (co). (4)
Thus the dynamics can be obtained from @"(co) if

Eq. (1) can be inverted to give @"(cu) in terms of the
Monte Carlo calculation of G(7 ). Unfortunately, the
kernel in Eq. (1) is such that G is insensitive to the de-
tailed structure of Q". Small statistical errors in the
MC data for G lead to large errors in $". Here, we
suggest a method to overcome this difficulty in the
case of a self-correlation function (i.e., for 8 = A ) for
which @"(co) ~ 0.

First of all, in order to increase the sensitivity, we
simulate not only G(~) itself, but also, independently,
its 7. derivatives, G (v ) (m = 1, 2, . . .), using rela-
tions like

Gi'~(r) = ([HA ( —l~)]8(0))
and so on. Note that the Gt ~ (m ~ 1), as given by
(1), contain under the integral the same spectral func-
tion @" as G, weighted, however, with additional fac-
tors ( —co)

To extract qb" from such a set of MC data, G~ ~(~;)
(where i=0, 1, . . . , L, say, and m=0, 1, . . . , M),
we then use a least squares fit proce-dure: -Starting
from an approximate trial function for P"(co),
@~(co,at, . . . , az), with adjustable parameters
at, . . . , aF, we define a sum of squared deviations,

D(a~, . . . , a~) = g [[G' '(r;) —G) (7;,a, , . . . , aF)]/aG, .™I',

where AG, t ~ is the standard deviation of Gt ~(r&) and G~(m)(~&, at, . . . , aF) is (the mth derivative of) the "fit-
ted" imaginary-time Green's function (m= 0, 1, . . . , M), obtained by inserting @z(co,at, . . . , a~) into the in-

tegral (1). We then determine the "best" trial function $z by minimizing D(at, . . . , aF) with respect to
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at, . . . , aF under the constraint that

4F(~ ot oF)

for all values of c0, thereby taking the positivity of
@"(cu) explicitly into account. In carrying out the
model calculations presented below, we have found
that this constraint is essential in stabilizing the fit
against large, unphysical fluctuations.

To test this method, we consider a simple one-
dimensional model of spinless fermions. The Hamil-
tonian6 is

N
H= g [ —t(cj c/+t+H. c.) + Vnini+t1,

J=1

where c& annihilates a fermion at lattice site j,
nl= cj cj, and we assume periodic boundary condi-
tions. Using the "world-line" algorithm, we have
simulated the zeroth, first, and second derivative of
the density correlation function, G(r, k), i.e. , the
self-correlation function of the operator

ttk=~ / X,e '"i'(tt. —(n. ) ).J

All results shown below pertain to an %= 16 site lat-
tice at a temperature kBT=0.2t and a Trotter number
l. = 25, which corresponds to an imaginary time

"slice" Ar= p—/L =0 2./t 7. For each of the two runs
shown in Figs. 1 and 2, 2000 fermion configurations
were sampled which took of the order of 10 h of CPU
time per run on a VAX 750 using a standard FORTRAN

program. The statistical errors (AG; ) in our G(r)
data were of the same order of magnitude at all 7, , typ-
ically 0.5/0 —1.00/0 of the value of G( l(r =0). The rel-
ative error b, G;( )/G( )(r;) was therefore quite small
near 7 =0 and r =p (0.5/0 —1.0/0), but substantially
larger (10%—1000/0) at intermediate values of '7

(r —p/2), since, for the cases considered, G( )(r)
becomes very small in this region [typically
G(r =P/2)/G(r =0) —10 ~—10 ].

As a trial function $z, we choose a histogram
representation with a certain "block" width b, W, i.e. ,
for o) «0

@F(o&,at, . . . , aF) = X atilt(t0)
1=1

(10)

where @t(t0) is unity when (/ —1)5 W& cu & ib W
and zero otherwise. Because of time and space inver-
sion symmetry, the exact spectral function satisfies
P"( —c0, k) =$"(c0,k) = @"(cu, —k). Therefore, we
set

@F(M,at, . . . , aF) = @F(—t0, at, . . . , aF)
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FIG. 1. Real-frequency density correlation function of a
noninteracting half-filled sixteen-site chain ( V= 0, ka T
= 0.2t). Full line, fit to MC data; dashed line, exact result.
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FIG. 2. Real-frequency density correlation function of a
strongly interacting half-filled sixteen-site chain ( V = 6t,
ka T = 0 2t). Full line, .fit to MC data; dashed line, analytical
strong-coupling result for the infinite system.
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for cu ~0. The advantage of this trial function is that
the absolute minimum of (6) under the constraint (7)
can be found very easily: After we have set a& —= b&2 (so
that @F~ 0), the search for the absolute minimum of
D (b&, . . . , bg ) reduces to a series of linear equations.
To determine the block width 5 P'or, equivalently, the
total width of the spectrum, W= I'6 W'was used as an
additional fit parameter which was varied to minimize
D.

In Fig. 1, we show @F obtained in this way for a
noninteracting ( V = 0), half-filled (eight-fermion)
system using a trial function with F=4 blocks. Also
shown is the exact @"(co, k) which, in this case, is a su-
perposition of 5 functions of the form 5(e~+k —e~
—m), broadened into Lorentzians for purposes of
display. Here, ~~ = —2t cosp, —m & p ~ vr, is the
single-particle energy at wave vector p. At our rela-
tively low temperature (kqT/4t =0.05), and for small
momentum transfer, k (( 7r, @"(cu, k) exhibits a nar-
row structure around cu = vFk = 2tk, corresponding to
the creation of particle-hole excitations across the Fer-
mi "surface, " pF= +7r/2. With increasing momen-
tum transfer k, this peak structure is shifted to higher
frequencies (up to the full band width co —4t) and
"broadened" asymmetrically, as more and more lines
appear in the spectrum. Notice that the fit result fol-
lows this behavior of the exact spectral function quite
systematically.

Also note that in general, because of the noise in the
input data, the individual 5 functions in @"(cu, k) can-
not be resolved by the fit procedure. Let us em-
phasize, however, that in the infinite-system limit, this
detailed 5-function structure is not of physical interest.
As we increase the system size, an increasing number
of more and more densely spaced 5-function peaks ap-
pears in the spectrum, each of them carrying less and
less weight. What is physically relevant is then only
some "smeared out" average of @"(cu, k) over a fre-
quency width of the order of or larger than the typical
level spacing. The finite width of our rectangular
blocks, 5 8; in (10) takes this "infinite system smear-

ing,
"at least crudely, into account.

In Fig. 2, we show the fit result for a strongly in-

teracting, half-filled system with V/t= 6, again with
I = 4. If V ~ 2t, the half-filled (infinite) system
exhibits a charge-density wave ground state. For
1 =0, it would correspond to a configuration of alter-
natingly occupied and empty sites. There are two such
configurations (3 and B, say), energetically degen-
erate. The lowest excited state with an excitation en-
ergy V consists then of a pair of domain walls (or a
"soliton-antisoliton" pair) separating segments of 3-
and B-type ground-state configurations. 6 Analogously,
two-pair, three-pair, . . . states can be created with ex-
citation energies 2V, 3V, . . . , respectively. A sma11

but finite intersite transfer t « V broadens these

highly degenerate states into bands of a width of the
order t 6.The one- and two-pair band is clearly visible
in our fit result. Also shown in Fig. 2 is the result of
the lowest-order strong-coupling calculation for the
one-pair contribution to the spectral function of an in-
finite system. Since, for our model parameters, the
bandwidth is of the same order as the interband spac-
ing, this strong-coupling calculation is certainly of
doubtful validity as it completely neglects interband
mixing of states. Its lack of agreement with our fit
result, namely the difference in the bandwidth, should
therefore not be too surprising. We should also men-
tion that, in fitting the strong-coupling data, we have
allowed for an additional contribution of the form
ao5(cu) in the trial function (10) in order to account
for elastic (Bragg) scattering off the charge-density-
wave superlattice. Notice that, as expected, this Bragg
peak occurs at k = m. (represented as an extra block of
width 6 W/2, centered around co = 0) .

We have also carried out simulations for a strongly
interacting system, again with V/t = 6, which is one
fermion short of being half filled (seven fermions per
sixteen sites). In this case, the system exhibits a soli-
ton pair already in its ground state. As a result of in-
elastic scattering off this pair, we would expect to see
(at least for small wave vector k) low-frequency exci-
tations below co —V,

9 which are not present in the ex-
actly half-filled case. Indeed, this behavior is borne
out in the fit results.

Considering the lack of detailed quantitative agree-
ment between our fit results and the exact solution
(e.g. , for the noninteracting fermion case), the ques-
tion arises as to how to improve these results. First of
all, one should, of course, try to enhance the resolu-
tion of the trial function @F, by increasing the number
of blocks F. Using the MC data described above, we
have carried out such fits with block numbers up to
I' = 8. The results for the intensity distribution @J;(cu)
are very similar to those shown in Figs. 1 and 2 (where
F=4). However, they do not show substantial im-
provement in their quantitative agreement with the ex-
act results. Also, the minimized value of the sum of
the squared deviations Eq. (6) decreases only by a few
more percent as we increase the number of blocks
from I' =4 to I' =8. This indicates that most of the
information about @"(o&) contained in the given set of
G(r) data has been exhausted by the "I'=4" fit.
Nevertheless, it is encouraging to see that the results
with different Fvalues are at least stable, i.e. , qualita-
tively in agreement with each other. We therefore be-
lieve that better fit results for the spectral function
@"(cu) will necessarily require an improved statistical
accuracy of the input data G(r), in addition to an
enhanced resolution of the trial function @F. For ex-
ample, we have applied our method to G (r ) data that
were obtained by randomly superimposing a certain
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noise level on the exact G(r) values that are readily
available for the noninteracting system. Indeed, we
find a significant improvement of the fit results if the
noise level AG;l 1 is reduced by factors of 3—10 from
that present in our MC data. It is not unrealistic to as-
sume that such an improved accuracy of the MC data
can be achieved within reasonable time by use of faster
computation facilities. Nevertheless, we feel that even
with the given level of accuracy, our method can pro-
vide useful insights.

In conclusion, we have demonstrated that our
method allows one to extract qualitatively, and in cer-
tain quantitatively, real-frequency spectra of many-
particle systems from imaginary-time data, simulated
within reasonable amounts of computation time.
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