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We develop a simple local-field-effect theory in order to calculate the polarization near the sur-
face and the surface dielectric response of crystals. We obtain a surface-induced anisotropy in all
the optical properties of cubic crystals. A calculation of the reflectance anisotropy of a Ge(110) sur-
face is in good agreement with recent measurements.

PACS numbers: 71.45.Gm, 68.20.+t, 78.20.Dj

The measurement of the anisotropies in the optical
properties—such as reflectance, ellipsometric coeffi-
cients, and surface-plasmon-polariton dispersion
relation—of different faces of cubic crystals’? is an
emerging tool for the investigation of surface struc-
ture, since in their bulk, cubic crystals are isotropic in
the long-wavelength limit. Some of these anisotropies
have an extrinsic origin such as anisotropic adsorbed
films,> surface states,* and surface reconstruction.’
However, in order to identify these extrinsic effects,
one has to subtract the intrinsic anisotropies which
may be allowed by the symmetry reduction near the
surface. In some cases, these can only be obtained
from theory. In this Letter we show that, even for a
clean, bulk-truncated crystal, and with disregard of the
modifications of the electronic structure near the sur-
face, there is an important contribution to the intrinsic
anisotropy which has as its origin the change in the lo-
cal field near the surface: the surface local-field ef-
fect.®

There has been a prolonged interest in the local-field
effect,” that is, the influence that the interaction
between nearby points of a system through the spatial
fluctuations of the electric field has on its macroscopic
dielectric response.® Besides the textbook calculations
of the bulk dielectric function of cubic crystals made
up of point polarizable atoms,’ much work has been
done on the microscopic, quantum-mechanical formu-
lation of the problem.!%!! However, only few
quantum-mechanical calculations of the local-field ef-
fect near crystal surfaces have been done,>!? since
they are hindered by the loss of translational sym-
metry.!3 Yet, there are many calculations within the
model of point polarizable atoms.!* In the latter calcu-
lations, the optical properties of the system have usu-
ally been obtained directly from the microscopic
Maxwell’s equations. The main disadvantage of this
approach is that each optical property requires a
separate microscopic calculation. On the other hand,
the macroscopic response of the crystal near its surface
has usually been disregarded,!® and few observable
consequences of the surface local-field effect have
been predicted.

In the present Letter we calculate the change in the
macroscopic response produced by the change in the
dipolar contribution to the local field near the surface
of cubic crystals, within a model of point polarizable
entities. With this macroscopic response, a perturba-
tive solution!® of the macroscopic Maxwell’s equations
can be used in order to calculate all the optical proper-
ties for different orientations of the surface and of the
plane of incidence. In this way we obtain an intrinsic
surface-induced anisotropy of the optical properties of
cubic crystals which is in good agreement with recent
experiments.!

We start by dividing the crystal into a lattice of po-
larizable entities with a polarizability a.y defined
through the equation

Pi=aer(Ef*+ 3, T;P)), (1)

where p; is the dipole moment of the ith entity, Ef* is
the external field, and Ty, is the dipole-dipole interac-
tion tensor. If the crystal were made up of point polar-
izable atoms occupying the lattice sites and interacting
between themselves through the dipolar field only, a
would be the atomic polarizability «. This identifica-
tion fails even for the noble-gas solids, where aes is
modified by the confinement of each atom by nearby
atoms'’ and by the multipolar'® and van der Waals in-
teractions.!® The interpretation of a.y as an atomic
polarizability is even worse for covalent crystals in
which there is overlap between the electronic orbitals
of nearby atoms, giving rise to an exchange interac-
tion.!!

However, aq may still be interpreted as an effective
polarizability: ngaes is the susceptibility that the crys-
tal would have if the dipolar interactions between enti-
ties were turned off, where ng is the number density of
entities. This interpretation, as well as a microscopic
calculation of e« for a simple two-band semiconduc-
tor, has been discussed by Fiorino and Del Sole.?® No-
tice that a.g is a function of position since in general it
depends on the density?! and the geometrical arrange-
ment of the nearby atoms. Because of the presence of
nondipolar interactions, a.s also depends on the spa-
tial behavior of the fields, i.e., it is a nonlocal quantity.
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Nevertheless, we remark that within the interpreta-
tion above, the bulk dielectric function € of cubic crys-
tals in the long-wavelength limit is given exactly by a
relation of the Clausius-Mossotti type,2°

(e—l)/(e+2)=%wn0aeff. (2)

Therefore, a4 can be obtained from the experimental
measurements of €, and the value thus obtained is
dressed by the whole self-interaction of each entity,
and by exchange, correlation, and any other nondipo-
lar interaction between nearby entities.

Since a. depends on the environment of each enti-
ty, it is different for the entities near the surface.
However, in order to investigate the effects of the
change in the dipolar contribution to the local field
near the surface of cubic crystals, we will neglect this
change in a4 and we will use its bulk value as given
by Eq. (2). We expect the change in the local field to
be confined within a region near the surface whose
width is much smaller than the wavelength of light.
Then, in this region we can ignore retardation and any
slow variation of the external field.?2 Assuming that
the system occupies the half space z =0, we can write
Eq. (1) as

2 M, [P, —Ppl= 2 M,.Ps. (3)
m=0 m<0
where P, is the dipole moment of any entity in the
mth plane (m=0,1,2,...) divided by its share of
volume, P is the bulk polarization, Pg= (e —1)E/
47 =(e—1)D/4me, and M,,=3,,1— noaesUm;
negative values of m on the right-hand side refer to
planes deleted to produce the semi-infinite crystal.
Here,
1 , 1

Unm no Ej vivi IRI—Rj‘ ’
with /in plane n and jin plane m, is the planewise sum
of the static dipolar interactions, whose efficient
evaluation has been discussed in the literature.?® This
is an extremely fast decaying function of |n — m/|, and
so it can be truncated after a small number of planes.
In order to arrive at Eq. (3) from Eq. (1) we have used
the relation between the constant external field and
the macroscopic electric E and displacement D fields:
E®*= (E* EY,D?).

Following the perturbative approach of Ref. 16, an
appropriate way of characterizing the macroscopic sur-
face response is by means of the surface conductivities
((Ad™)), ((Ao?)), and ((AsZ)), defined through

A= ({(Ac**)YE*(0), um=xy,

Air= ((As®)) DX0), @)
where Ai is the surface current [dz[j(z)—jg(2)].
Here, j is the actual current density, and jp= — ioPp

is the current density of the bulk. Solving Eq. (3),2%*

subject to the boundary condition P,,— Pz— 0 as
m — oo, for the change in polarization near the surface
of the crystal, we can calculate

e—1 P#‘PI';

AocHt)) = —iwa , =X,),
((Bom)) = —inah 3 o umy
(5)
2y . €—1 P, — P
((As®)) iwa—— ngﬂ P

where a is the distance between crystal planes and we
assume that the principal axes of ((Ao)) point along
the x and y directions.

Finally, these surface conductivities can be substi-
tuted in Egs. (31)-(33) of Ref. 16 in order to obtain
the surface impedance of the system. By substituting
this in equations such as (37) and (41) of Ref. 16, we
can immediately calculate all the optical properties of
the system.

Since there are recent measurements! of the
normal-incidence reflectance anisotropy on a Ge(110)
surface, we calculate the normalized change in reflec-
tance,

AR _ R*-R’
R R
_ 167 p | (Ao®)) — ((ag?)) | (6)
c e—1

when the polarization direction rotates from the x
((110)) to the y ((001)) direction. The inputs to our
calculation are the bulk response €, taken from the
measurements of Aspnes and Studna,?® and the lattice
structure, and there are no adjustable parameters.
However, we must choose our polarizable entities.

Since Ge has a diamond structure, we choose as po-
larizable entities tetrahedra, each with a Ge ion at its
center, four shared Ge ions at the vertices, and four
doubly occupied electronic orbitals joining the center
to the vertices. These tetrahedra are arranged in an fcc
lattice with lattice constant 5.658 A.26 With this choice
we minimize the nondipolar interactions between
nearby entities since there is only a small overlap
between the four orbitals that meet at each
tetrahedron vertex. The sharing of the vertex ions
between four tetrahedra should be of no concern at re-
latively low frequencies, for which the polarization is
dominated by the motion of the valence electrons and
not by those in the ionic cores.

In Fig. 1, we show the normalized change in polari-
zation along the (110) surface as a function of the
crystalline plane number #, for a frequency of 4.3 eV
where the imaginary part of € peaks. Notice that at the
surface, the polarization along the (001) direction
differs by more than 60% from its bulk value.?
Although the change in polarization at the surface is
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FIG. 1. Real part of the normalized change in polarization
along the (170) (solid curve) and (001) (dotted curve)
directions near a Ge(110) surface vs crystal plane number.
The frequency is 4.3 eV.

very large, it is confined to within the first — 10
planes, so that the perturbative formulas of Ref. 16
can be used. In the cases where the polarization does
not decay rapidly enough,?’ a different approach based
on an expansion in bulk normal modes (i.e., classical
Frenkel’s excitons?®) and the introduction of addition-
al boundary conditions might be used.® Notice also
the difference between the polarization along the
(110) and the (001) directions.

In Fig. 2, we show the real and imaginary parts of
the surface conductivities {((Ac*)) and ({(Ac”?)) as
functions of frequency. These were used in order to
calculate the reflectance anisotropy, shown in Fig. 3,
together with the experimental results of Ref. 1. Our
calculation predicts a reasonable line shape and is of
the correct order of magnitude. As could be expected,
we overestimate the surface local-field effect since we
replace every two finite-sized Ge atoms by one point
polarizable entity. Using a generalization of the for-
malism above, we have also included in Fig. 3 a calcu-
lation of the reflectance anisotropy choosing single Ge
atoms occupying a diamond lattice as polarizable enti-
ties. The striking discrepancy with experiment shows
that this is not a fortunate choice. The reason for this
is that the interaction between neighboring Ge atoms
is dominated by the covalently shared electrons, and is
therefore mostly nondipolar. Notice also that our
results are very sensitive to the crystal structure. We
have corroborated this sensitivity by repeating our cal-
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FIG. 2. Real and imaginary parts of the Ge(110) surface
conductivity along the (110) (solid curves) and (001) (dot-
ted curves) directions vs frequency.

culations assuming an sc and bcc lattice.

In conclusion, we have shown that the local-field ef-
fect induces a change in the macroscopic dielectric
response of cubic crystals near their surface. This
change depends on the orientation of the surface and
of the plane of incidence, so that the optical properties
such as reflectance, ellipsometric coefficients, and
surface-plasmon-polariton propagation also depend on
orientation. A calculation of the reflectance anisotropy
for normal incidence on a Ge(110) surface is in good
agreement with experiment, indicating that the surface
local-field effect accounts for most of the intrinsic
surface-induced anisotropies; other contributions to
the intrinsic anisotropy have been recently estimated
by Aspnes.! We have performed similar calculations
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FIG. 3. Normal-incidence reflectance anisotropy of a
Ge(110) surface vs frequency: fcc calculation (solid curve),
diamond-lattice calculation (dashed curve), and experimen-
tal result (dotted curve).
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for the reflectance anisotropy of Si(110) and for the
anisotropy induced by the local field on the dielectric
response of a monolayer of randomly oriented Br,
molecules physisorbed on a Ge(110) surface. The
agreement with experiment is similar to what we have
shown here. Although more elaborate calculations are
needed, they will have to take the surface local-field
effect into account. We believe that a microscopic cal-
culation of the change in a.y near the surface, fol-
lowed by a local-field calculation such as ours, might
be a more feasible project than present attempts™ 13 to
obtain the macroscopic response at crystal surfaces
from the microscopic, spatially fluctuating dielectric
response. We hope that this paper will stimulate work
in that direction.
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