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We show how a generalization of continued fractions can be used to develop a renormalization-
group formalism to study the behavior of maps of the two-torus. Such maps may mimic the
universal behavior of dynamical systems with three mutually incommensurate frequencies. Nu-
merical evidence indicates that "chaos ' may occur in maps which are invertible. While we do not
see scaling at chaos onset, subcritical scaling is observed and explained by the number theory.

PACS numbers: 05.45.+b, 02.30.+g, 47.20.+m

Continued fractions and renormalization have had a
key role in our understanding of transitions to chaos
governed by two competing incommensurate frequen-
cies. This approach involves the modeling of a compli-
cated dynamical system by a simple recursion formula
which one hopes retains certain universal features of
the original complicated system. Maps of the circle
have been used to study dynamical systems with two
incommensurate frequencies, '2 and maps of the
torus3 4 have been investigated as models of systems
where more frequencies occur. s

Our goal has been to understand the transition to
chaos of the multifrequency dissipative torus maps by
appropriately generalizing to maps of the two-torus the
renormalization-group structure which has been suc-
cessfully used to study the circle maps. There are
three main steps to generalizing the renormalization
algorithm: (1) We need to be able to approximate sys-
tematically two independent incommensurate frequen-
cies by rational numbers with a common denominator.
(2) We must use the rational approximants to con-
struct a renormalization transformation in an appropri-
ate function space. (3) Long cycles of a typical torus
mapping must be investigated to determine if a fixed
point of the renormalization group can be expected to
govern the chaos transition.

(1) Number theory We first de.—scribe how to ap-
proximate simultaneously two incommensurate
numbers a-„and orby rational-s with a common
denominator according to an algorithm apparently first
invented by Jacobi. We want to define a sequence of
integers (p„,q„,r„) so that lim„p„/r„= a.„and
lim„q„/r„=a. y. To do this, we form the three-
component vector pp= (a.„,cTy, 1). We will compute
the approximating integers by a sequence of coordinate
transformations. Define Po as the 3x3 identity ma-
trix. We now recursively define p„= ((p„)i,
(p„)2, (p„)3), and P„.

We assume that the rows of P„define the vectors of
the nth coordinate axes x„,y„and z„ in the original
coordinate system xo, yo, and zo, a statement clearly
true for Po. Define J„as the index of the minimum of
the three entries of p„, i.e. , (p„)J ~ (p„)t for all I.

We let Perm(J„) be the 3&&3 matrix which cyclically
permutes the coordinate J„ofp„ to coordinate 3, and
label the resultant intermediate permutation of p, by
p„' = Perm( J„)p„. We now form the integers
N„= [(p„')i/(p„')3] and M„= [(p„')2/(p„')3], where
[x] means the greatest integer less than or equal to x.
Since we are free to multiply p„by a scalar without
changing relative ratios of each component, we define
(7 „) ' = (p„')3. We also define the matrix

1 0 —N

Tying tvt
= 0 1 —M Pei'nl( J) (1)

0 0 1

and Sjiv~ (TJ+ivI) where transposition is indicated.
The recursion is then defined by

+a+ & n „,N„,M„P yg Pn + i SJ„,N„,tvI„P ~ (2)

The entries of P„are all positive and grow with n,

while det(P„) = 1 and P„'p„= (ii":—'0 r )po This.
choice for the transformation is not unique. In con-
trast to the ordinary continued-fraction algorithm, we
can construct equally sensible transformations, for ex-
ample, by choosing J„ to be determined by the
second-largest entry of p„, so that one of M„or N„ is
zero. This nonzero value of M„or N„could also be
replaced by 1, which yields a matrix which only has a
single 1 on an off-diagonal. This last construction
gives the analog of the Farey approximations which
have been investigated in the context of circle maps. 7

We do not believe that this indeterminacy is a serious
drawback to the method; each of these candidates for
the continued fraction generalization would work
equally well; no known algorithm gives the "best"
simultaneous approximant.

Our transformations are sequences of shears. The
new basis vectors x„, y„, and z„ in coordinates of the
original lattice form the rows of P„and become longer
and longer with increasing n. The unit cell remains
with constant volume since the determinant of TJ~M
is one. The ray p„ is always in the positive octant of
R3 and is contained in a triangular cone defined by the
basis vectors. Seen in coordinates of the'original lat-
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p(f) = lim —f2(0) = ([p(f)]„,[p(f)] ), (3)

where 0 is the origin. (Functions are never multiplied;
the superscript on a function refers to repeated compo-
sition here and elsewhere in this article).

The curly bracket ( } will denote a triplet of points in
the plane and (g) = {g1,g2, g3} denotes a triplet of map-
pings of the plane whose values are

(g) (x) = ($1(x),$2(x), &3(x)).

Here and henceforth, capital indices refer to a particu-
lar member of the triplet (). The first triplet of the
series {g„}= {$„1,(„2,$„3} is defined to be {go)(x)
= (x—x, x —y, f(x)},where x= (1,0) and y= (0, 1).

Associated with any 3X3 matrix of integers p =l2tj
we can define the operation of the matrix on a
function triplet ($1, (2, (3). The operation is similar to
matrix multiplication but composition will replace ad-
dition and unless the functions commute under com-
position, we must be careful of the order in which we
compose them. The Jth element of (p (g)) will be:

(+ @ (g) ) g1J, lg&J, 2g&J, 3 (4)

tice, the triangular cone has smaller and smaller solid
angle with increasing n .Each triplet of integers in
each row of I'„ forms a simultaneous rational approxi-
mation to the ray po. The best of these approximants
is the set

(l.,q. , r. ) =((1'.)31 (~ )32 (~ )33).

which we define to be the nth simultaneous rational
approximant. The error in the approximation is of the
order II k=I12 „',which converges to zero.

(2) Renormalization transformation. —We define the
map on the two-torus by f(x) =x+ Q+g(x) where
g(x+m) =g(x) and f:R2 R2 is a mapping of the
two-dimensional plane x= (x,y) to itself, m 6 Z2 is
any pair of integers, and Q C R2. We assume that
f (x) is C and invertible. The winding number is a
two-component object p (f ) defined by

An important special case is

~1, 1, 1, (4}= ((2 43 4162(3) .

In our application, it will be easy to show that all our
functions (g)t commute so that the order of composi-
tions is not important.

Assume that (g„) is given. Let 4{x1,x2, x3} be the
interior of the triangle defined by three arbitrary points
in the plane, x1, x2, x3. Let 0 be the origin. Let
po= ([p(f)]1,[p(f)]2, 1) and let p„be the sequence
of p„defined by the Jacobi algorithm starting from
t»s v»ue of po»nc« "(0)—(l2„,q„)~ 0 for large

n, it is natural to investigate Co1"(oz"go3" which can be
seen to be equivalent. We look at this multiple com-
position recursively by investigating the intermediate
compositions {g„+1)=SJ ~ ~ S {g„). For all these

function triplets, the origin is included in the triangle
5 ({g„}(0)) . This transformation would eventually
shrink the triangle 5{(g„)(0)) to zero. To remedy
this, we apply a rescale transformation with the 2& 2
matrix n so that $1(0)= —x and $2(0) = —y is
preserved. Thus, a„' is the matrix whose column
vectors are —(g„)J 1(0) and —(g„)J @2(0),
where S indicates addition modulo 3. Finally, we
define

(4.P1}(x)=~„(&J ~ M (g„))(~„'x). (5)

(Identical arguments or prefactors of each function in-
side the bracket are written outside the bracket. )

(3) Wttmerical results. We will no—w focus on maps
of the torus which are related to the special winding
number necessary to make W„= M„=1, p„=po= p,

and J„=1 for all n. This pair of winding
numbers is the simplest analog of the golden-mean
winding number for circle maps. The rescale factor

satisfies the cubic equation 7' = 3. + 2. + 1,
2-=1.83928675521, and p= (2. ', 2. —1). This
particular choice of p together with our recursion for-
mulas generates a set of rational approximants
(l2„,q„,r„). We let a be a set of parameters (a&)k and
f, n the mapping

(6)

It shouldbe noted that I~ I'=~ and l~
When aA0, we appeal to results of Arnold and Her-

man. 8 Let p =p(fn, ). Loosely stated, "Part A" says
that if p is a sufficiently mutually irrational pair of
winding numbers, f&, is equivalent to the shift map
f~,=o via a C' change of coordinates if and only ifThis type of scaling is "trivial, " since it follows from

(a„)„(f, n(x))k=xk+Qk+g "
ins(2 (27n+xmy)), k=1, 2,

N Nl

where k labels the coordinate x or y.
For a particular set of parameters a, we define the number theory developed in the first part of this

) = ( Q Q ) by f" (0) = (& q ) Thus article. The two eigenvalues of the 2 x 2 matrix a are

Q„ is the parameter value which places the origin on d~~~t~d y (~ +

r„cycle with winding number p = (p„/r„, q„/r„). We ),= --,'(.(.—1) + (4.+1-")'i'}.
can define the 2&& 2 scaling matrix S„by Q „+1—Q „
=8„(Q„—Q„1) where matrix multiplication is im-
plied. It is not difficult to show that for the case a= 0,
the two eigenvalues of S„are

(S„) = —,
'

{—(1+~) + t(3~2+2~+3)'i2).
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sup, l I Jac(fg, ) (x) I I & ~, where I I

. .
I I indicates

matrix norm (maximum length of the image of a vec-
tor on the unit sphere) and Jac indicates the Jacobian
of the mth iterate of the map with respect to x. A
mapping which satisfies Part A is termed "subcriti-
cal, " otherwise it will be called "supercritical. " Map-
pings which are arbitrarily close to both supercritical
and subcritical mappings are termed critical, and the
parameter values of these maps are said to be on the
critical boundary. "Part 8" states that for sufficiently
small a, the map fn, is subcritical.

Our numerical results for an unsystematic sample of
modest values of parameters I (a; ) k I

~ 0.5 is con-
sistent with Part 8 of Arnold's theorem. This fact has
also been observed by others in numerical experi-
ments. 3 All these maps are subcritical and S„and a„
converge to the trivial scaling form in the limit n

Part 8 can in fact be proven9 from our renormaliza-
tion-group equation by investigating the "trivial"
fixed point determined by Eq. (5) with a = 0.

In contrast to ordinary circle maps, there is no
reason to believe that the critical boundary for this
problem is associated with the Jacobian of f becoming
noninvertible at some point in the domain. Our nu-
merical work clearly indicates that there is a large fam-
ily of maps (our guess is most) which become critical
at parameter values where the map is still invertible.
This phenomenon is well known in area-preserving
maps of the annulus. 'o

We have investigated a special critical map with
parameter values a=0 except (aors)~ =1. This decou-
pled map could in principle show universal critical
behavior if the cross-coupling terms of a nonlinear
map were "irrelevant. " In spite of investigating cycles
to length 121415, we were unable to discover a scaling
formula for 8 and a in this case and believe (based on
what we know of the complicated behavior of circle
maps with winding number which is not the root of a
quadratic equation with integer coefficients) that criti-
cal behavior of decoupled maps is not governed by a
simple fixed point. In spite of the absence of a fixed
point, we can discover whether or not the critical
behavior is stable against small perturbations coupling
the x and y variables. If we use standard scaling argu-
ments, this can be done by computing

physically relevant for generic torus maps.
As a paradigm for the strongly coupled circle maps,

we investigated the one-parameter family of circle
maps a=0 except a = 2(ao~) ~

= —,
'

(a~o)2. In this case
f, ~ becomes noninvertible when a = 1. We were un-
able to find a precise value of the critical boundary
although in this case, too, we checked cycles up to
length 121415. We have, however, strong numerical
evidence based on Part A of Herman's theorem indi-
cating that the critical point a, is below a = 1. Conser-
vative bounds are 0.96 ( a, ( 0.97. The bound on a,
becomes apparent only for cycles of length greater
than 19513; it converges extremely slowly in n,
although at fixed r„~ 19513, the value of the bound-
ary appears much better defined than the uncertainty
in the bound of a, would suggest. We were unable to
discover a scaling form for either 8 or a . (Lack of
scaling for mappings whose Jacobians vanish has previ-
ously been observed by Guckenheimer, Hu, and Rud-
nick. 4)

The image of a 100&&100 grid on the unit square
under 149 iterates of this torus map with a = 0.97 and
Q chosen so that the origin is a member of a stable
149-cycle is shown in Fig. 1. There is clear evidence
of the appearance of a singularity of the Jacobian of
the iterated map. We claim that this parameter value
is an upper bound for the critical value of a.

Any one of several reasons could explain why we
have not observed simple scaling. We chose some-
what arbitrarily to include the origin in the cycles for
which we calculate Q „. However, in this problem no
criterion singles out the origin as the proper point
about which to scale. Simple scaling about a

where ~ indicates any one of the parameters (a~)k or
Q, or a small parameter multiplying any other func-
tion one might want to add to the form of f, n. One
then checks if any of these terms which do not vanish
as n ~ are in the subspace spanned by F„[Q„],
F„[Q~], and F„[(ao~)q]. On the basis of this calcula-
tion, we conclude that the critical decoupled torus map
is unstable against cross-coupling terms of the type
(a~ ~) k and hence that decoupled circle maps are not

FIG. 1. The image of a 100& 100 grid of points filling the
unit square is show for a supercritical map corresponding to
a = 0.97 under 149 iterates of the map. The elements of the
149-cycle which includes the origin are sho~n as particularly
dark dots. A few images and preimages of the origin have
been labeled.
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renormalization-group fixed point can only be
discovered if we expand about special points of the
domain; expanding about any other point will destroy
simple scaling. It is also possible that critical behavior
is not governed by a simple renormalization-group
fixed point or that a fixed point exists, but our map
shows very slow crossover to that fixed point and/or
leading complex eigenvalues. Finally, it is possible
that the fixed point may have associated homoclinic
points, leading to a "chaotic" renormalization-group
trajectory. 4 We are trying to determine which of these
scenarios occurs. Lack of knowledge of either an exact
critical value of a, or the proper point about which to
scale together with the extremely long cycles which ap-
pear to be necessary has made further progress very
slow.

We have shown how to construct a renormaliza-
tion-group theory for maps of the n-tori, and have nu-
merical evidence that the chaos transition occurs be-
fore the maps become critical. Subcritical scaling is
determined by the number theory we develop. We be-
lieve that these statements are "generic" for n-torus
mappings when n ~ 2. For experimentalists who want
to probe scaling at the transition to chaos the situation
is discouraging; the necessity of investigating extreme-
ly long cycles makes observation of any simple scaling
behavior which might exist appear to be hopelessly
beyond the realm of any realistic experiment.
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