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Novel Phase Diagram for Self-Avoiding Walks (Polymers)
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The analogy between self-avoiding walks and the zero-component magnetic system on a lattice is
considered. The magnetic system possesses a natural boundary in the (7-H) plane below which we
cannot continue it analytically. It is found, however, that we do not have to cross this boundary to
obtain the semidilute regime. The scaling relation of des Cloizeaux is confirmed. There is also
discovered a new phase below the boundary which is identified as a collapsed phase. This is quite
unexpected because no attractive interactions are allowed.

PACS numbers: 05.50.+q, 64.70.—p

Self-avoiding walks (SAW’s) have been used exten-
sively as an ideal representation of linear polymer
chains. Most of the analytical and mathematical prop-
erties of SAW’s have been obtained for the case of a
single SAW in an infinite-volume limit,! where bound-
ary effects are unimportant. If one is interested in
long-range properties of polymers, then their chemical
details are not very important and the above model
seems to be quite appropriate. The scaling behavior of
a single SAW is identical with that of a zero-
component magnetic system.? This analogy was ex-
tended by des Cloizeaux® to describe a polymer solu-
tion (in a good solvent) in the semidilute regime
where chains overlap strongly: This regime corre-
sponds to vanishing external magnetic field H just
below the critical temperature 7, (see path 1 in Fig. 1).
With this observation, he was able to put forward an
important scaling relation for the osmotic pressure that
has been checked experimentally.*

The above success of the scaling relation® has given
rise to an unfounded belief, which has been used ex-
tensively to calculate various quantities of interest,’
that the analogy between SAW’s and the » =0 mag-
netic system works everywhere. It should be em-
phasized that the proof of the above correspondence
assumes® full O(n) symmetry and, therefore, works
only at high temperatures and, at most, up to the criti-
cal point T,. It has been believed to work even below
T., where the O(n) symmetry is explicitly broken.
However, it has been shown only recently® that such a
belief is unfounded: For n <1, and, in particular,
n =0, the O(n) model cannot be analytically continued
below a certain line 4C defined by H — 72 (see Fig.
1), where 7= (T, — T)/T,. Various pathologies appear
just below AC as we analytically continue the theory
for n < 1, which suggests a certain phase transition
across AC. Since the path 1, along which the semidi-
lute regime is defined, crosses AC, it throws doubt on
the scaling relation proposed by des Cloizeaux, in spite
of the fact that it has also been derived by other
methods not involving any n = 0 limit.”

The aim here is to consider carefully for the first
time the correct analogy between the magnetic system

(n =0) and the polymer system over the whole range
of temperatures. It is shown that the scaling relation
of des Cloizeaux is correct, except that it is obtained
not along path 1, but along paths lying above ACB,
with 4CB defined by |7| ~ HY2. 1 introduce a scaling
variable X. Below BC, X — 0 as we approach C or the
H =0 line. This phase is identified with the dilute
solutions of polymer chains. The chains are swollen
and the value of v is given by v=3/(d +2). Above
the curve ACB, X is finite as we approach C. This lim-
it gives us the scaling behavior of overlapping chains
in the semidilute regime. Below AC, X — oo as we ap-
proach C or the H =0 line. This phase is identified as
a collapsed phase or a compact phase (v, =1/d). This is
a new phase, never discussed before in the literature,
in the context of the magnetic analogy. What is even
more remarkable is the fact that such a phase can actu-
ally occur in the present model which does not allow
for any attractive interactions, needed for such a
phase. The only interactions allowed in the model are
repulsive in nature. The crossover from the dilute re-
gime to the semidilute regime is a smooth one. As a
matter of fact, they both represent the same phase.
However, we must go through a transition as we go
from the phase above AC to the phase below, with AC
playing the role of a spinodal boundary, below which
instabilities appear. It is also found that we cannot jus-
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FIG. 1. The analytic continuation of the magnetic system
(n =0) breaks down below the spinodal boundary 4C. The
phase below AC represents the collapsed phase of the poly-
mer system. The dilute limit is obtained below BC. The
scaling limit of the semidilute regime is obtained by ap-
proaching C along a path located in the region above ACB
and not along path 1.
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tify screening which suggests random-walk behavior in
the region above ACB as is the current belief. There is
only one length scale in the problem in this region and
it scales as || ¥ as we approach C.

Let us briefly summarize the current state of our
understanding. We will restrict ourselves to a lattice.
It is found® that the activity « for a bond and the ac-
tivity n for an end point of a SAW are related to the
ferromagnetic coupling K and the magnetic field H of
the corresponding magnetic system (#n =0). The na-
tural object for study is the following partition func-
tion:

Z= 2 EKI'Y)ZPUP_I, ¢))

p=0/=p

where U, is the number of ways of putting p different
SAW’s of total length / on the lattice with Ny sites.
This partition function Z has been studied only recent-
ly without any # = 0 limit for all x and .> The critical
point is located at k =k, (T=T,), n=0 (H=0), and
is completely destroyed as soon as n=0. The phase
above T, is well understood: As T —T.* (k— k. ),
H =0, one is describing the scaling behavior of a sin-
gle SAW. It is found that the polymerization index
N = ¢,/¢p is inversely proportional to |7], where b, is
the polymer chain density. The phase below 7, has
been investigated only recently’ and the following pic-
ture, valid for n=0, emerges. The polymer density ¢,
is zero everywhere. The ground state of the system is
basically a single SAW, covering a finite fraction of the
lattice sites (¢;=0) below T,. As T — T., ¢, vanishes
like 7!~ and remains zero above 7.

When we study the nature of the analytic continua-
tion of the O(n) model® for n =0 below 7., the fol-
lowing picture emerges. Let x=7/M 1/ B and y
=+/HY2, 1t is found that along AC, y is a constant,
which is taken to be unity: y — 1. Along AC, we also
find that x=1 which indicates that the system
achieves its ‘‘spontaneous’ magnetization M =M,
even if H#=0. This two-valuedness of the M-H rela-
tion is not surprising for the O(»n) model for n < 1.1
Below AC, the analytic continuation develops various
pathologies, which suggests that AC is a natural boun-
dary for the analytic continuation of the O(n) model
from the high-temperature side. Below AC, we cannot
learn anything about the polymer problem from the
magnetic system. In other words, 4C forms a spinodal
boundary below which the continuation becomes un-
physical. Therefore, it is important to consider the po-
lymer problem without use of the magnetic analogy
below AC. However, above AC, we can safely exploit
the above analogy to its fullest extent. This is what I
intend to do here.

Before proceeding further, let me give another argu-
ment based on finite-size scaling!! to support my pic-
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ture of the ground state. According to finite-size scal-
ing, we expect the correlation length ¢(N,) to be
determined by the linear size N{/¢ of the system,
where d is the space dimensionality. In the context of
the SAW, the correlation length is the linear size R
of the SAW. Therefore, &(Ny)=R,~ N*~ N{/?
~ |r|~*, where N is the length (polymerization in-
dex) of the SAW. This gives us the expected relation
N ~ |7|~!. Since the volume occupied by the SAW is
Vo — R& — N,, we find that we can have only a finite
number of P of SAW’s as Ny— oo. (The number P
cannot grow as N§, with 0 < o < 1.) As we approach
k. along n=0, we expect to have only a finite number
P of SAW’s. Therefore, without loss of generality, we
can assume that we have effectively only orne chain in
the system below k.. As we begin to increase x above
K., this only increases the length of this single SAW,
and gives rise to the ground state described above.

For « > k., our SAW must cover a finite fraction of
the lattice sites. This is possible only if the SAW is
spread out throughout the lattice: The linear size of
the SAW is identical with the linear size N¢/¢ of the
lattice. Such a walk is known as a collapsed or a com-
pact SAW. If we define v, by Ry~ N"°, we find that,
since N = ¢;Ny, v, =1/d, i.e., the fractal dimension of
the collapsed SAW is equal to the space dimensionality
d. 1t is evident that a collapsed SAW is quite distinct
from a swollen SAW observed below k.. Moreover, it
is also clear that the boundary effects are very impor-
tant in the collapsed phase, whereas they are basically
unimportant in the swollen phase. In a sense, one can
envision the phase transition at k. as a transition from a
phase where the boundary effects are unimportant to a
phase where they become crucial in determining the
ground state. It should be remarked that the boundary
contributions are important in breaking supersym-
metry,'? a symmetry that is expected to be broken at
Ko 13

Let us now consider the case of nonzero n. We in-
troduce V0=N“" as the volume occupied by a single
SAW of length N, and V' =1/¢, as the amount of
volume available for each chain. (As n— 0, ¢,— 0
and V becomes unbounded. Since N =d>,/¢p, Vy in-
creases in this limit, but the relative magnitudes of ¥V
and V depend on whether ¢, is zero or not as n— 0.)
Let us assume that ¥y << V. In this case, chains are
far apart and there is basically no overlap between
chains. Evidently, this situation corresponds to the di-
lute limit of the polymer solution. The chains are
swollen as a result of excluded-volume effects and
v=3/(d +2). Let us introduce a scaling variable X:

X=¢;/¢p = VO/ V)l/(dv-l)’ ¢;=¢fi"/(d"—1), @

where ¢, is defined as the value of ¢, at which
Vo~ V. As we change m so that Vo~ V, the chains
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begin to overlap considerably. Below AC, as n— 0,
¢, — 0, but ¢, is finite and nonzero. Therefore
X — oo. I now show that X — 0 below BC, and takes
on some finite and nonzero values in the region above
ACB defined by |r| ~ HYA, as we approach the critical
point Cor the H=0 line.

As remarked above, we can exploit the magnetic
analogy above and on AC. From this analogy, we can
write down the scaling form for ¢; and ¢, as follows:
¢ =1719""1£(y) and ¢,(y)=I71?"f,(y). Near
H =08 ¢,=«ke and ¢, =MH/2, where € is the energy
per bond and M is the magnetization per spin of the
magnetic system. For T'>T,, M~ H as H— 0.
Therefore, ¢, ~ H?, which is possible if £, (y) ~y =2
as y — —oo. Similarly, £;(y) ~y~? in this limit
since N ~ |7|~!. Therefore, as H— 0 above T,, we
find that X ~ [£,(3) 1Y@~ — 0. From (2), we find
that X — 0 implies ¥y/V — 0, which characterizes
polymer solutions in the dilute limit, as we have ex-
pected. The scaling form of the osmotic pressure can
be written as [I=¢,/g(X). As X— 0, fp(X)—1
and II ~ ¢, = ¢;/N. The correlation length ¢ behaves
as N~”, as expected.!*

Let us now consider the region above ACB. For the
sake of clarity, let us consider the behavior of f;(y)
and f,(y) at T=T, (r=0). Here we expect that
¢, () ~ H' T3 suggesting that f,(y) ~ |y|~9 as
|y|— 0. Similarly, we expect that f;(y) ~ |y|1=9" as
ly|— 0. Therefore, ¢, ~ H'¥~1/A and ¢, ~ HI/.
The average length N behaves as H~ 2 and tends to
infinity as H — 0. Moreover, X = ¢/"/4*=V/¢, also
tends to a finite and nonzero value. As a matter of
fact, it is not hard to see that y approaches a finite
value as we approach C along any path lying in the re-
gion above ACB, and that X also approaches a finite
and nonzero value in this region. For the sake of con-
venience, we will express this by writing X — 1, which
is only expected to mean that X is finite. Below AC,
along any path approaching C or the H =0 line, both y
and X tend to infinity. However, because of the break-
down of the analytic continuation, we cannot use the
magnetic analogy below AC.

Let us consider the osmotic pressure for X —~ 1. We
expect f(X) to be a finite constant!®> and since
b, ~ ¢, we have Il ~ ¢y~ ¢/ @*=1D which is the
famous scaling form of the osmotic pressure proposed
by des Cloizeaux in the semidilute regime. Therefore,
we can safely conclude that the scaling limit of the
semidilute regime is obtained by approaching C in the
region above ACB. The correlation length in the semi-
dilute regime is expected to behave as &~ |7|™”
~ ¢, ¥4~ 1 obtained for any finite nonzero y. This
again agrees with the scaling behavior of ¢ in this re-
gime. The crossover from the swollen phase below BC
to the semidilute regime is expected to be completely
smooth across BC. However, it should be emphasized

that there is really not any fiundamental difference
between the swollen and the semidilute regime, as
they both belong to the same paramagnetic phase of
the magnetic system. We know that the scaling form
for various physical quantities in the paramagnetic
phase depends on whether y is finite or infinite. For
example, X, ~ |7|77 or H/8~! dependent upon the
values of y. However, they both describe the same
paramagnetic phase. Similarly, in our picture, the di-
lute and the semidilute regimes are not fundamentally
different. In contrast, according to des Cloizeaux the
scaling limit of the semidilute regime is identified with
the ferromagnetic phase of the magnetic system and,
therefore, is supposed to be fundamentally different
from the swollen phase.>!* In particular, we still have
only one length scale, i.e., &, in our problem and it
must behave as £ — |7|~*. We therefore cannot justi-
fy screening, which has been argued to imply!* that
R2?2~ N in the semidilute limit. In our picture, the
scaling limit appears only in the limit ¢, — 0, as we
approach C. Therefore, even the radius of gyration R
scales not as N2 but as N” in the scaling limit: We
can always write R§~ N¢,~ &~ V/@v=1 put as we
approach C along any path of constant X, it is easily
seen that R& ~ N2, This is in conformity with the
result derived by Oono without use of the magnetic
analogy.!®

Let us now ask what happens as we cross AC. The
ground state along H =0 is a single SAW. As ¢,
reduces to zero, we reduce the number of chains [see
(1)] while increasing the average length of each chain.
The only mechanism that can accomplish this is for two
end points of two different chains to join together to
produce a longer chain. The probability of finding two
end points close together is proportional to ¢o,,2 and
vanishes as ¢, — 0. If the chains continue to
penetrate each other as we reduce ¢,, then the
number of overlapping chains 7,yer,, Must grow as
Rovertap — Vo/ V ~ X"*~1 [see (2)], so as to maintain a
finite bond density ¢;. However, there is no way that
these infinite number of chains, each infinitely long,
can join together to yield a single SAW in the ground
state since the probability of two end points close to-
gether vanishes. Therefore, the chains cannot to
penetrate. Since the collapsed phase is physically dis-
tinct from the swollen phase, there must be a phase
transition across AC. The transition is probably a very
weak transition with an essential singularity along 4AC.
Since AC forms a spinodal boundary® below which we
get a complex solution of the magnetic equation of
state for » =0, the transition might also be a first-
order one with, presumably, a discontinuity in entropy.
In view of these heuristic arguments, we can now put
forward the following picture. The system undergoes a
phase transition from a semidilute regime to a col-
lapsed phase. The nature of the transition is not clear
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at present. In the collapsed phase, the chains have
their fractal dimension equal to d (v, =1/d), and V) is
given by Vo~ 1/ ¢,. We do not require any overlap to
yield a finite ¢;. As ¢, is lowered, each chain begins
to grow in length by joining itself with neighboring
chains until eventually, at ¢, =0, we have the ground
state of a single chain. The collapsed phase is a critical
object having self-similarity at various length scales.
This is represented schematically in Fig. 2 by the dark
chain configuration (¢, =0). The configurations of
broken light chains depict the situation of a nonzero
¢, below AC. A comparison of the two configurations
suggests a possible mechanism that might be going on
as ¢, is reduced. We should remark that Hamilton
walks’® (n— 0, k— o) must be compact walks and,
therefore, also possess self-similarity. It is not hard to
understand why we have a collapsed phase when all we
have are the repulsive excluded-volume interactions.
Let us assume reflecting boundary conditions. The
boundaries begin to create a pressure on the chain as it
begins to fill the lattice below 7,. It is this pressure
that mimics an effective attractive potential producing
a collapsed phase. Since such effects are not present
above T,, we always have a swollen phase there.
There appears to be a certain amount of similarity
between this situation and the one that occurs in hard
disks.!® However, it should be realized that our col-
lapsed phase is intimately related to the connectivity,
i.e., topological constraints for chains. This phase is
completely disordered and is different from the or-
dered phase in hard disks.

Let us briefly summarize our results. We have ar-
gued that there are three different regions: (i) swollen
phase corresponding to X =0, (ii) semidilute regime
corresponding to X =1, and (iii) collapsed phase cor-
responding to X — oco. This is shown schematically in
Fig. 1. We go smoothly from the swollen phase to the

FIG. 2. The thick curve represents the ground-state con-
figuration of a collapsed chain (¢,=0). The broken thin
curves represent the configuration of many collapsed chains
below AC (¢,=0).
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semidilute regime. We also argue that this regime is
not physically a distinct phase, different from the di-
lute regime: Both regimes are physically identical. We
expect a transition across AC into the collapsed phase.
We have been able to recover the scaling relations pro-
posed by des Cloizeaux for II. However, we cannot in
our picture justify the appearance of screening in the
semidilute regime: In the scaling limit, Ry= N* as we
approach C, and not as Ry= VN as is usually as-
sumed.!

An alert reader might have noticed a certain similar-
ity between our AC and the Thouless-Anderson-
Palmer boundary in spin-glasses.!” I hope that this is
not fortuitous and that the present analysis might pro-
vide some insight into the spin-glass problems.

I would like to express my thanks to the theory
group and to J. des Cloizeaux at Saclay for their kind
hospitality where this work was initiated. The financial
support from the Research Corporation and a Faculty
Research Grant at the University of Akron is grateful-
ly acknowledged.

IM. E. Fisher, J. Chem. Phys. 44, 616 (1966); J. des
Cloizeaux, Phys. Rev. A 10, 1665 (1974); D. S. McKenzie,
Phys. Rep. 27C, 35 (1976).

2P. G. de Gennes, Phys. Lett. 38A, 339 (1972).

3]. des Cloizeaux, J. Phys. (Paris) 36, 281 (1975).

4M. Daoud, J. P. Cotton, B. Farnoux, G. Jannink, G. Sar-
ma, H. Benoitz, R. Duplessix, C. Picot, and P. G. de
Gennes, Macromolecules, 8, 804 (1975); J. Amirzadeh and
M. E. McDonnell, Macromolecules 15, 927 (1982).

SL. Schifer and T. A. Witten, J. Phys. (Paris) 41, 459
(1980); A. Knoll, L. Schifer, and T. A. Witten, J. Phys.
(Paris) 42, 767 (1981); L. Schafer, Macromolecules 17,
1357 (1984).

6P. D. Gujrati, Phys. Rev. B 31, 4375 (1985).

7T. Ohta and Y. Oono, Phys. Lett. 89A, 450 (1982);
T. Ohta and A. Nakanishi, J. Phys. A 16, 4155 (1983).

8P. D. Gujrati, Phys. Rev. A 24, 2096 (1981).

9P. D. Gujrati, Phys. Rev. Lett. 53, 2453 (1984), and 54,
852(E) (1985).

10P. D. Gujrati, Phys. Rev. B 25, 3381 (1982); R. B. Grif-
fiths and P. D. Gujrati, J Stat. Phys. 30, 563 (1983).

11M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516
(1972).

12E. Witten, Nucl. Phys. B188, 513 (1981).

13G. Parisi and N. Sourlas, J. Phys. (Paris), Lett. 41, L403
(1980).

14p. G. de Gennes, Scaling Concepts in Polymer Physics
(Cornell Univ. Press, Ithaca, 1979), Chap. 10.

15Y. Oono ““Statistical Physics of Polymer Solutions,’’ to be
published.

16B. J. Alder and T. E. Wainwright, Phys. Rev. 127, 359
(1962).

11 Heidelberg Colloquium on Spin Glasses, edited by J. L. van
Hemmen and I. Morgenstern, Lecture Notes in Physics,
Vol. 192 (Springer-Verlag, Berlin, 1983).



