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Commensurate-Incommensurate Transitions with Quenched Random Impurities
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Commensurate-incommensurate transitions in uniaxial two-dimensional systems are examined
in the presence of impurities that interact with domain walls. Exact Bethe-Ansatz calculations, test-
ed by numerical studies, indicate that randomness is relevant and leads to new critical behavior —a
discontinuity in the specific heat and divergence of domain size with an exponent of 1. The results
are interpreted in terms of the behavior of a single interface. Global phase diagrams are presented
and experimental implications are discussed.
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Close to the commensurate-incommensurate transi-
tion (CIT), the incommensurate phase (IC) is com-
posed of large commensurate domains separated by
domain walls. ' 7 The critical behavior at the transition
at finite temperatures is determined entirely by the
statistical mechanics of these domain walls. In two-
dimensional uniaxial systems the interfaces are pri-
marily aligned to a single lattice direction, and energy
considerations prevent neighboring domain walls from
crossing. ' 7 The transition to the IC phase occurs
when the free energy fi of a single interface vanishes.
In the IC phase the average domain size l is deter-
mined by a repulsive interaction between interfaces
due to a loss in entropy. 6 Each interface in the pure
system undergoes a random walk between collisions
with its neighbors. If the domain size is l, the average
distance between collisions will scale as l . Balancing
the gain in energy f1 for each interface with the entro-
py loss —I/lz due to collisions leads to a divergence
of domain size l, with an exponent of —,

' as the CIT is

approached (the specific heat also diverges with a simi-
lar exponent).

The predicted exponent of —,
' has indeed been ob-

served experimentally for bromine intercalated in gra-
phite. There are several experimental and theoretical
realizations of systems of noncrossing interfaces.
Steps on the surfaces of three-dimensional crystals do
not cross, leading to a singular signature in equilibrium
crystal shapes. 9 The characteristic exponent of —,

' also

describes the ferroelectric transition in the six-vertex
model, 'Oand appears in certain dimer problems" and
in models of two-dimensional polymer crystalization. '2

In this paper we examine the effects of quenched
random impurities on this transition. The defects con-
sidered here couple locally to the domain walls (i.e. ,
they attract or repel the interface), but have no cou-
pling to the domains. (Defects that couple to the or-
der parameter have the effect of random fields, and
have been examined by Villain. '3) In adsorbed layers
this type of randomness is caused by impurities that
are sources of local dilations and compressions, but are
free to move with the film on the substrate without in-
terchanging positions with their neighbors. Such im-
purities lead to reentrant melting at sufficiently low
temperatures on a smooth substrate. '"'5 On a smooth
substrate there is a long-range strain field (uj —1/r )
associated with an impurity. Close to a CIT on the in-
commensurate side, however, the large regions of reg-
istered adsorbate lead to a strain field which falls off
exponentially. Consequently, we shall assume short-
range interactions between the domain walls and these
impurities. Similar approximations apply to the steps
on a crystal surface. The defects in this case are either
impurities or dislocations terminating on the surface.
Bond randomness in the six-vertex model of ferroelec-
tric leads to similar effects.

In this note we point out that the Harris criterion'6
implies that this type of randomness is relevant at the
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CIT. When the domain size exceeds a characteristic
length ld, new critical behavior is expected. An exact
Bethe An-satz calculation in conjunction with the repli-
ca method predicts that there is now a divergence of
domain size with an exponent of 1, and a discontinu-
ous specific heat. These predictions have also been
confirmed numerically, and can be explained in terms
of the loss of energy for an impurity-roughened inter-
face due to confinement by its neighbors. A global
phase diagram with reentrant CIT and melting transi-
tions leading to a glasslike phase at low temperatures is
suggested.

The following simple model will be used for describ-
ing the CIT. The domain walls are placed on the
bonds of a rectangular lattice. At zero temperature,
and in the absence of impurities, the interfaces are
straight lines along the y direction. At finite tempera-
tures (or as a result of randomness) the interface be-
comes rough and fluctuates away from its equilibrium
position. There is an energy p, ,j associated with cross-

M(t) = dx{[p,(x, t) —2y]c(x) c(x) —yc(x) ti'

where c and c are fermion fields. The free energy
(the largest eigenvalue of the transfer matrix) corre-
sponds to the ground-state energy of this Hamiltonian.
For a uniform p, , the free energy with a density r = 1/l
of domain walls is

f(l) = (p, —2y)r+ymzr /3 (2)

For p, & p, , = 2y, the density r is zero; while in the IC
phase it vanishes as r = [(p,, —p, )/y]' /m, i.e. , with
the previously mentioned exponent of —,

' .
Now consider the case where the p, ;i are quenched

random variables, with independent Gaussian distribu-
tions of incan p, and variance a2. Harris s c-riterion'6
states that randomness becomes relevant when the
shift in p, , due to randomness in a coherence volume
0, is comparable to p, —p, , Because of the anisotropy
of the system some care is necessary in identifying the
coherence volume 0,. At finite temperatures in the
pure system, the fluctuations of a single wall after y
steps obey (5x2) = 2yy. If the domair. size is l (in the
IC phase), the distance between collisions is y, —12/y.
We identify the coherence volume to be the area over
which a single collision occurs, i.e. , 0, ,= l3/y. The
variance of p, due to randomness in a volume 0, is

(&p, ') = ([) dx dy p(yx)/n, ,]')
= a2/0 = ya-'/l'-

ing a bond in the y direction, and energy Eo for bonds
in the x direction. For technical reasons spatial varia-
tions in Eo are not allowed, although we do not expect
this limitation to effect our results near the CIT. The—E kTCIT takes place in the limit p, —e =y, and in
this limit it is sufficient to consider configurations in
which the interfaces jump only one step (to right or
left along the x direction) at a time, and overhangs do
not occur (the familiar solid-on-solid assumptions).
The partition function Z is obtained by summing over
all possible wall configurations with appropriate
Boltzmann weights. This sum is evaluated by use of a
transfer matrix along the y direction. As originally
pointed out by Pokrovski and Talapov, 2 and extended
by several other authors, the noncrossing condition
for interfaces is naturally incorporated in the transfer
matrix w by regarding the configurations of domain
walls as fermion world lines. The Pauli exclusion prin-
ciple automatically prevents crossings. In the limit
y (( 1, a continuum approximation leads to
~ = e ~, with a Hamiltonian5

c (x)/Bx'),

« (p, —p, ,)', i.e., (ya'/l') (l4/y') —l/ld « 1,
where lq =—2y/ais a ch-aracteristic length associated
with disorder. As the CIT is approached l diverges,
eventually exceeding ld, and a crossover to new critical
behavior takes place.

The quenched average free energy corresponds to
the ground state energy of Hamiltonian (1) in a poten-
tial that is random in both space and time. (A potential
that is random in space only is familiar in the context
of localization. It corresponds to strips of correlated
randomness in two dimensions, which if the distribu-
tion is Gaussian destroys the CIT.) The replica
method is used to calculate the quenched average free
energy [ (lnZ) = lim„(( Z") —1)/n ]. The parti-
tion sum Z({gati,)) corresponds to all noncrossing wall
configurations with random energies. The walls are re-
plicated n times in Z({p,))". Although walls of the
same replica do not cross, walls of different replicas
can cross. The averaging process (Z({p,) )") results in
an attractive interaction between walls of different re-
plicas when they do cross. {If m walls cross at a bond
p, tj, the average

(e ~) = exp[ —m (p, —a. /2) + m (m —1)a2/2]-
leads to a renormalized single-wall energy p, —a2/2, -

and a pairwise attraction of order a. .) Again the
transfer matrix formalism can be used, and in the con-
tinuum limit (when both y « 1, and ld » 1), the
Hamiltonian is

n 2

A „= dx' (p, —2y —Ta- )c c —yc —2a. c c cpcp, , (4)
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which describes n species of fermions interacting by an
attractive contact potential. For repulsive potentials
such Hamiltonians have been studied by Yang, '7 and
Sutherland. is Their results can be extended to (4),
and a brief summary is given here, with the details to
appear elsewhere.

The ground-state wave function for nN fermions has
the form

i/I (xi, . . . , x~ )

Xz[Q,P] exp[i(k~txgt+. . . + kp~xg~) ],
where P and Q are permutations of nN particles and

n —1

G„(x)= 2~5(x)+ g, , n
i x+o. (5)

The energy and density are calculated in terms of p(k)
as

[Q,P] are (nN)! coefficients. We make the Ansatz
that the momenta are in n bands as ik
= ik, + (n +1—2n)/2ld, with n= 1, . . . , n and t =1,
. . . ,N. In the N ~ limit, the density p(k) of mo-
menta obeys

pkF
J~~ „dk' id G„(id (k —k') )p (k') = 1,

F

with

kF kF
E„(N) = nL ' [p, —2y —o /2 —(n —1)o. /48y]r+ yJI dk p(k)k ', Jt dk p(k) =N/L = r.—kF —kF

The n 0 limit of the kernel in (5) exists, and gives the following results for the quenched average free energy:
kF

(f(r)) = [p, —2y —o. /2+o/48y]'r+y~ „dkp(k)k, (7)
where

py. gy
the blocking of favorable paths by neighboring walls.
Recent numerical simulations by Huse and Henley in
a similar interface model indicate that in the presence
of randomness the interface is rough at zero tempera-
ture. The fluctuations of a wall scale as ~5x~ —y,
while the energy gain from randomness scales as yi'
with a ———,

' and p = —,
' (the exponents n and p are re-

lated by p=2a —1). We have checked numerically
that these exponents still apply to interfaces at finite
temperatures. When the domain size is l, the distance
between collisions scales as y, —l' . The energy loss
due to collisions for a single wall scales as

E(l) yP(I/y ) l(P t)ia i2(a- t)i~

%ith the numerical estimate o. = —,', the predicted scal-
ing E(l) —1/l is regained. Alternatively, the above

g(t)/~Id

2/t

1/+I
2

4

FIG. 1. Critical behavior close to a CIT with impurities:
specific heat (solid line), and domain size (dashed line).

i kF
P dk'{I/ld(k —k') + sr coth[7rld(k —k') ]Ip(k') = k.J —kF

In the limit kFld » 1 (l « ld), p(k) = I/2m, and the nonrandom [Eq. (2)] results are recovered. For
kFld » 1, where random effects dominate, p(k) = ld(kF —k ) 'l /2m", and from (7)

(f(l)) = (p, —2y —o.2/2+ o4/48y)/l+ mo2/2i2+. . . ,

i.e. , the second leading term is order of 1/l rather
than 1/l . This leads to random criticality character- merically for various l s up to l = 200, and is plotted in
ized by a domain-size divergence i=era. /(p, —p, ,), Fig. 2. The results are indeed consistent with a 1/l
and a discontinuous specific heat as indicated in Fig. 1. dependence, as compared to 1/l for the nonrandom

There are usually many difficulties associated with case.
calculating quenched average free energies by the re- For the CIT in nonrandom systems it was possible to
plica method. Although no such problems were en- give a simple explanation for the exponent of —,

' (en
countered in the present calculations, we decided to tropy loss due to collisions of interfaces undergoing
check the analytical results numerically. Since each random walks). It would be desirable to have such an
wall is confined by its neighbors to a distance of order explanation for the exponent 1 in random systems in
l, Eq. (7) implies that the free energy of a single inter- terms of the behavior of a single interface. It turns out

face confined to l will behave as (fi(l)) = (p, —p, , ) that the most important effect in random systems is
+ m o.2/2!+. . . . This free energy was calculated nu- not the loss of entro but the loss of ener due to
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FIG. 3. Possible phase diagrams in temperature —chem-
ical-potential space, in (a) nonrandom and (b) random
cases. In addition to the commensurate (C), incommensu-
rate (IC), and disordered (D) phases, there can be a glass
(G) phase in the random system.
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FIG. 2. Free energies for interfaces confined to a strip of
width l, with (lower) and without (upper) randomness.
Results are obtained numerically by summing over all

configurations in a long strip (y = 1, for o.2= ~ and 0).

explanation, in conjunction with the exact results of
Eq. (7), provides an indirect proof that the exponent
determining the roughening of interfaces due to ran-
domness is exactly n= —,'. It would, of course, be
desirable to have a direct evaluation of this exponent.

It is interesting to use the above results to conjec-
ture the form of the global phase diagram of adsorbed
layers undergoing CIT with quenched randomness. A
possible phase diagram is given in Fig. 3 and is com-
pared to the nonrandom phase diagram. With ran-
domness present, it is easier to form domain walls, and
the commensurate phase occupies a smaller portion of
the phase diagram. Also as in nonrandom systems the
stability of the IC phase against dislocations has to be
checked. 4 7 We have not determined the limits of sta-
bility although, in general, disorder makes the IC
phase less stable. ' The criticality condition p, ,=o. /2+27 —cr /48y indicates a reentrant IC phase,
although the continuum limit (ld )& I) breaks down
at very low temperatures. The IC phase itself becomes
unstable at low temperatures as a result of the unbind-
ing of dislocations by random strains. '"' Kinetic con-
straints probably lead to a glassy disordered phase at
low temperatures in this case.
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