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A general formalism is outlined for the calculation of the transport coefficients of a normal-metal
network in the weak-localization regime. Simple circuits such as loops and ladders are used to illus-

trate our approach. A closed expression for the magnetoresistance of an infinite regular network is

derived. We find that, in contrast with superconducting networks, no fine structure due to interfer-
ence effects between adjacent loops is expected. Our results agree very well with the recently ob-
served oscillations in normal-metal networks.
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Since the prediction' of a Bohm-Aharonov —type ef-
fect in disordered metals, with half-quantum flux
lflp = hc/2e, only two groups were able to observe
clearly this effect in the following new multiconnected
geometries: regular networks and ladders. The ori-
ginal experiment, performed on a hollow cylinder, has
been repeated by several groups. The magnetoresis-
tance (MR) oscillations observed in these experiments
are actually the manifestation of a specific and new
phenomenon in disordered materials. The physical ex-
planation in terms of coherent backscattering has been
advanced~ in the case of electronic transport. Howev-
er, the interference effect, obtained originally through
an explicit diagram calculation, is really a very general
phenomenon in systems with quenched disorder.
Indeed, the basic origin must be traced to the amplifi-
cation of the backscattering during the propagation of
waves in randomly inhomogeneous media, where mul-
tiple scattering dominates. As long as A. « l (X is the
wave length and l is the mean free path), the first in-
terference corrections to the wave-field energy-
transport equation are controlled by the so-called fan
diagrams. This is actually the case in the weak-
localization regime. The presence of a magnetic field,
which couples to the phase of a wave function, is
therefore the most direct method to reveal the in-
terference effects.

Given the fundamental aspect of the interference
phenomena in disordered metals, it is natural to look
at the corresponding corrections in new geometries,
like networks, where the recent experiments were per-
formed. The magnitude of the MR oscillations has
been calculated only for the hollow-cylinder geometry,
and there is no equivalent expression for the general
situation. In addition to the relevance of such a calcu-
lation for the experimental investigations, there are at
least two additional motivations for our study. Firstly,
how is the amplitude of the MR oscillation influenced
by the experimental setup? Secondly, are there new
features of the MR curve in the case of an extended
network? Actually, such effects will be produced by
interferences between adjacent loops in the network.

For instance, in superconducting networks, such ef-
fects were predicted and observed on the fine struc-
ture of the upper critical line. Is there a counterpart in
the case of normal networks?

In this Letter, we report on a general formalism for
the calculation of transport coefficients for a normal-
metal network of arbitrary shape. Our formulation, il-
lustrated below on some examples, permits us to
answer the above questions and provides explicit ex-
pressions for the MR oscillations for an arbitrary net-
work. In the following, we will limit our exposition to
localization corrections in the weak-localization re-
gime. Note, however, that corrections due to
electron-electron interaction can also be calculated in
the framework of the present formulation. A more
detailed exposition will be given elsewhere.

The localization correction to the conductivity in the
weak-localization regime (kFl )) 1) is given in gen-
eral by the following expression:

b, o-(r) = —(2/m v) a.oC(r, r),

where o-0 is the bulk conductivity of the sample, given
by Drude's formula, and v is the density of states at
the Fermi level. The equation for the Cooperon
C (r, r') in the presence of a magnetic field (vector po-
tential A) is

}[—i'7, (27r/Po—)A(r)]2+ L& 2}C(r, r')

= (I/it D )h(r —r'). (2)

Here D denotes the electron diffusion coefficient and

L+= (D 7 @) 'l2 is the length over which dephasing of
the electron wave function results from inelastic
processes or of spin-spin scattering from paramagnetic
centers. Equation (2) must be supplied by a boundary
condition on the surface of a given sample. In the fol-
lowing, we shall confine ourselves to the free boun-
dary conditions. It is important to notice that Eqs. (1)
and (2) correspond actually to a self-averaged theory,
where all traces of randomness are summarized in L&.

As can be seen from Eq. (1), the correction to the
conductivity depends on the coordinates. However,
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since 4o-(r) is a small correction to the total conduc-
tivity, the total correction to the measured resistance,
for instance, is obtained by integrating Ao-(r) over the
volume of the system.

In order to calculate b o.(r) in a multiply connected
geometry, Eq. (2) leads to formidable calculations, al-
ready in the case of simple circuits such as the hollow
cylinder or single rings. ' The situation becomes very
simple in the thin-wire approximation used here.
Indeed, we shall investigate networks made of thin
wires, having a thickness much smaller than L&. This
corresponds to wires of effective dimensionality one,

and this condition is actually fulfilled in the experi-
ments done on networks. The finite width of wires
can, however, be taken into account, and this results
in a renormalization of L, + which becomes a function
of the magnetic field (see below). This formalism
breaks down in very small systems' where there is a
lack of self-averaging. If we assume that C(r', u) is
known at two adjacent nodes of the network, it is
straightforward to deduce C(r', r) for any point r on
the strand (nP). This remark permits us to write
down a set of Kirchoff-type equations, leading to the
following network equations:

M =X coth —2g . , (sa)
l p cos(2m@, )/@p

P

e
ly p

isn(h.,i/~L)
' (Sb)

In Eq. (sa), the first sum is taken over nodes p con-
nected to node o. by a strand of length l p. The second
sum is taken over elementary loops of length l, con-
taining the node a and defining a magnetic flux @,.

—iy

L& &
stnh l &L+

In this basic equation, l & refers to the length of the
strand (nP) between nodes n and p of the network,
and y p= (2m/@p) f A dl denotes the circulation ofP

the vector potential A along this strand. The sums in
Eq. (3) are taken over nodes P connected to node o. ,
and S is the cross-sectional area of the wires. In this
equation, the point r', where the correction to the con-
ductivity is calculated, acts as an additional node. This
remark, as well as other observations, 7 shows the basic
differences between Eq. (3) and the similar one
derived for superconducting networks. " Starting from
Eq. (3), one can check that we recover the known'
result for a single loop in a normal magnetic field,

—,~ sinh(L/L+)
(4)R cosh (L /L&) —cos (27r @/Pp)

'

where z = (2e /mh o-p) Lqi/S. Here L denotes the
length of the loop, and $ the magnetic flux through its
surface.

Note that Eq. (3) can also be used in the case of a
thin wire with dangling side branches. In this
geometry, the local character of Ao-(r) is well illustrat-
ed where a nonmonotonic behavior of Ao-(r) is ob-
tained.

In general, for a network of arbitrary shape, a com-
pact expression for 4R/R can be derived, if we take
into account the linearity of Eq. (3). For this, we shall
introduce the following N &N Hermitean matrix M,
where N is the number of nodes in the network:

(3)

With use of the matrix M, the correction to the total
resistance can be written for a network of arbitrary
shape. In particular, for a regular network, such as the
square lattice (see below), made of identical strands
with l p=a, the correction of the total resistance is
given by (q = a/LcIi)

1

W
2 q cosh' —sinhg 2

2 z q sinhq

Here z denotes the coordination number of the lattice,
and A. ; ~ 0 denotes an eigenvalue of the matrix M.

In the following we shall illustrate the above equa-
tions in three particular cases.

(i) Ladders. —We have studied different networks
where two or many loops are connected through arms
or contact points. In general, the presence of arms
damps out the MR oscillations. Furthermore, for a set
of two loops, with a common node or a common edge,
regular oscillations with a periodic behavior of MR is
obtained for rational values of the flux ratio @t/@2.
However, for two identical square loops with a com-
mon edge, no secondary maxima (i.e., at @t 2/@p ———,

' )
are obtained, in contrast with an intuitive expectation.
This behavior is well illustrated in Fig. 1 for a simple
strip (ladder) made of identical square loops of side a
each. The absence of new features of the MR persists
on a multistrip of arbitrary width.

(ii) Infinite square lattice This case ca.—n be studied
either directly or as a limit (M = ~) of a multistrip of
width M. Both approaches lead to the same results.
Let us describe the direct approach based on Eq. (6),
where z =4. For a magnetic field H, normal to the
planar network, one can take for convenience the Lan-
dau gauge, A~ = —Hy, A~ =0, and use the translation
symmetry in direction X. The eigenvalue problem can
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be written as a Harper's equation':

+ p~+ t + 2 cos(m y + 0) Q (7)

where e = 4 cosh' —X sinhq, q = a/Lg, y = 27'@/@o,
and tl denotes a Floquet factor (0( 8 ~ 2n. ). Here, a
refers to the side of elementary plaquettes and

!
P = Ha 2. Equation (7) can be solved for rational

@/@o——p/q (p, q integers and prime to each other).
With use of Bloch's theorem, the secular equation,
giving the eigenvalues e, can be cast as a polynomial
equation: P~ q (e) —W = 0, where P~ q (e) is a polyno-
mial of degree q in e, and 8' denotes a parameter in
the interval [ —4, +4]. For more details, we direct
the reader to Refs. 7 and 12, and Wannier, Obermair,
and Ray. '3 Here we quote just the final result for the
localization correction to the total resistance

q cosh' —sinhq 8 sinhq Pp', q (4 cosh~)+ L
4 q cosh' 7r q P~ q (4 cosh' )

4

P~ q (4 cosh' )

Here P'(x) denotes the derivative of the polynomial
P~ q taken at x = 4 cosh' and K (x ) refers to the ellip-
tic integral of first kind,

f m/2

K (x) =J dt/(1 —x sin t)'
0

In Fig. 1, we have shown Eq. (8) as a function of the
reduced flux p/q for values of q up to q = 50. As can
be seen, hR/R exhibits actually a periodicity at integer
values of @/@o only, as was anticipated before. The
whole curve is a smooth one and indeed analytical. In
fact, despite the rich structure of the spectrum" asso-
ciated with Eq. (7), b, R/R is given by a regularizing
sum [Eq. (6)] over the subbands of this spectrum,

0.5

0
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FIG. l. hR/R as a function of the reduced flux P/@p
shown for three networks (a/L =0.2): curve a, single
square loop of perimeter L =4a [Eq. (4)]; curve b, simple
ladder made of identical square loops; and curve c, infinite
regular network made of identical square loops [Eq. (8)].
For convenience, AR /R has been normalized to its value at
zero field in each case. Triangles, corresponding to case c,
are calculated for rational $/@0 = p/q, p ~ q, and q ~ 50, ac-
cording to Eq. (8) (see text).

weighted by the density of states, where logarithmic
singularities occur. However, Eq. (8) is analytic, be-
cause 4coshq lies outside the spectrum isa ~ 4 of Eq.
(7). This result is to be compared with the singular
behavior of the edge of this spectrum, measured in su-
perconducting networks.

It is interesting to look at various limits of Eq. (8).
Let us consider first the case of zero magnetic field.
For q 0, i.e., a « L&, one gets b, R/R = (x/
2m. ) (a/L+) in(L+/a ). This result reproduces the

bulk expression" AR = (e /Tr 0)R ~In'(L+/t) with a,
instead of I, as a cutoff at short length scales. Note
that our formalism makes sense only for a & I, and it
is natural to recover this result in the continuum limit.

In the limit of small but finite magnetic field, the con-
tinuum results for the magnetoresistance are also
recovered: AR (H) —H at @/@o« q and

b, R (II ) —ln(H/q') at @/@,» q'
Let us conclude with two comments relative to Fig.

1, where b,R /R oscillation is shown for three
geometries. Firstly, the absence of new interference
effects (e.g. , secondary maxima at rational @/@o) in

the ladder, as well as in the infinite network, comes
from the expression of AR /R itself. It is actually a
whole integral information over the spectrum of ma-
trix M, and the period of MR oscilla'. ion is the same.
Secondly, the amplitude of the oscillations is strongly
influenced by the geometry of the considered network.
This is clear at q &( 1, where for noninteger values of
@/@o, b,R/R —q in both cases. However, for integer

@/@o, b,R /R is of order q ', q, and q ln(1/q),
respectively, in the single loop, ladder, and infinite
network.

(iii) Honeycomb lattice The same ca.l—culations have
been performed on honeycomb lattices where MR os-
cillations have been measured. In order to make a
close contact with experiments, the width of the wires
must be taken into account. This results in a renor-
malization of the reduced factor g = a/L:

q'(H) = q'(H =0) + ,', Tr'(P/Po)—'(w/a)',
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FIG. 2. Quantitative comparison between the theoretical
results (triangles) and experimental data (solid line), for Cu
at T= 133 mK, taken from Ref. 2. The hexagonal elemen-
tary cells (side a = 1.5 p, m) are made of wires of width 0.42
p, m. In this fit, we have Lqp=5. 36 and L„=3.12 p, m,
respectively (L„ is the spin-orbit length).

where @ denotes the magnetic flux through an ele-
mentary hexagonal cell (side a) made of wires of
width w. This low-field approximation breaks down at
Haw & @a. The renormalization of q becomes impor-
tant at large H and is actually responsible for the
damping of oscillations. Our results are illustrated in
Fig. 2 where spin-orbit scattering has been taken into
account. Clearly, there is a fairly good agreement
between theory and experimental.
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