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Propagating Plasma Mode in Thin Superconducting Filaments
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ations exist with a soundlike dispersion relation
lomb interaction. In the restricted geometry this
does not shift the density mode to the bulk plas-

In superconducting filaments of cross section s
range at all temperatures, collective density oscill
and weak damping. The restoring force is the Cou
force is proportional to the wavelength and hence
ma frequency.

PACS numbers: 72.15.Nj, 73.60.Ka, 74.40.+k

We will report in this Letter on a new collective
mode in superconductors with a soundlike linear
dispersion relation. In contrast to neutral superfluids,
where a large variety of such modes exists, in super-
conductors the Coulomb interaction shifts the fre-
quency of all the density oscillations to the plasma fre-
quency. So far only one propagating mode has been
discovered. ' The characteristic feature of this
Carlson-Goldman (CG) mode is a balanced oscillation
of normal and supercurrents, which avoids the buildup
of space charge. Because of the Ohmic dissipation as-
sociated with the normal motion, the mode is over-
damped except in a narrow temperature range near the
transition temperature T, .

Our new mode is a charge-density oscillation. The
essential feature is that in superconducting filaments
with very small cross section, the Coulomb interaction
is less effective so that the restoring force is propor-
tional to the wavelength, which leads to a soundlike
dispersion relation. The requirements on the small
transverse dimensions are severe and can only be met
with modern lithographic techniques. This may ex-
plain why this mode has not been detected or dis-
cussed in the past. In contrast to the CG mode our
plasma mode exists at all temperatures below T, ; actu-
ally, the damping vanishes at zero temperature. Near
T, both modes coexist in different wave-vector re-
gimes.

The propagating plasma mode involves oscillations
of the phase of the superconducting order parameter
and thus is the Goldstone mode associated with the
corresponding degeneracy. Apart from being of con-
ceptual and experimental interest, it may be of techni-
cal importance in understanding the behavior of small
superconducting electronic circuits.

It is instructive to discuss first the plasma modes in
restricted geometries for normal metals. We consider
a filament or radius ro embedded in a medium with
dielectric constant ~. In a very simple model, to be
presented below, the density oscillations with wave
vector k obey the dispersion relation

(co + itov; v)F(kro) —to~" (1)

Here
co~~

"~ = (4m. nez/m)' 2 is the plasma frequency of
the bulk normal metal and

F (y) = 1+2eKg (y)/yKO(y), (2)

in which Ko and K~ are modified Bessel functions. It
is assumed that the impurity-scattering time ~; v is
shorter than the inelastic-scattering time ~;„. For wave
vectors and radii such that kro)) 1 and I' = 1, we re-
cover the standard bulk plasma oscillation. In con-
trast, for small radii and wave vectors such that
kro « 1 and F '= —,

' e '(kro) ln(1/kro), the electric
field is mostly outside the filament. As a result we
find a propagating plasma mode with the dispersion re-
lation

Ql + IQ)1. c k =0
ImP PP

and phase velocity

e " = 'to " r e 'ln(1—/kro).

We immediately notice that this mode is overdamped
unless cu exceeds ~; ~. Also, the propagating plasma
mode only follows the above description if c~~~"~, as
given by Eq. (3), is much smaller than the speed of
light. Indeed this condition is required for consisten-
cy: When we derived Eq. (3) we ignored retardation
effects, which would obscure the interesting features
of our new mode. For typical metals with a plasma
frequency of about 10'6 s ', the radius ro has to be in
the range of 10 nm or less. This, but even more so the
requirement of high frequency (co » ~; ~v), makes it
difficult to detect this normal-metal propagating plas-
ma mode. In addition, in the normal metal, if the
phase velocity exceeds the Fermi velocity the mode is
"Landau damped" by the excitation of quasiparticles. 5

In a superconductor it is much easier to detect the
mode. The Ohmic damping is only associated with the
normal current, and the gap in the excitation spectrum
prevents or reduces the damping due to the excitation
of quasiparticles. As will be shown below, the spec-
trum of collective modes in a superconducting fila-

Gerd Schon
Institut fiir Festkorperforschung, Kernforschungsanlage Julich, D 5170-Julich, West Germany

(Received 8 April 1985)

114 1985 The American Physical Society



VOLUME 55, NUMBER 1 PHYSICAL REVIEW LETTERS 1 JULY 1985

ment follows from

i~+ r n ) [rp F(krp) + I'Q)477(rqp C0p ] ccGk [ —1'Q)F(krp) + 41To ~] = 0. (4)

Here we introduced the plasma frequency associated
with the superfluid density n„co~' = (n,/n)ti2cu ".
The quasiparticle conductivity o-~ has the well-known
temperature dependence, reducing to the normal-state
conductivity a.„near T, and vanishing exponentially
near T = 0. Finally ceo is given by

c,'o = n, /mX, (5)
where X, is equal to 2N(0) f(h/k&T). The limiting
forms of fare rrA/4ka T near T, and 1 at T = 0. Equa-
tion (4) is sufficient as long as r0 & 2b, /h. At larger
frequencies a strong damping due to pair breaking will
occur.

In the limit of large wave vectors or large radii, such
that krp)) 1, well-known results are reproduced by
Eq. (4). At large frequencies we find the plasma oscil-
lation of the superfluid component, which is not too
relevant because of the simultaneous restriction

~qP +ImP

Near T, in dirty samples the phase velocity is
ceo = (2DA/t) ' 2 with D the diffusion constant.

In the other limit krp (( 1, for thin wires and small
wave vectors, Eq. (4) yields the following dispersion
relation:

c0 & 24/t. On the other hand, at small frequencies we
recover the Carlson-Goldman mode as we know it
from bulk samples, with the dispersion relation follow-
ing from r0 +ir0(r;„+cod) —ccok =0. The neces-
sary counteroscillation of the normal component and
the associated Ohmic dissipation make a large contri-
bution to the damping, except in a region very close to
T, . The damping is given by the sum of the inelastic
scattering rate and

~ (s)2
cUp fl~ 0 ~ 1 ()

4m. a-~

( —irp+r;„)(r0 —c~~k )+ [ir0( —iru+r;„) —ccGk ]+1;n ccok

This is our main result. At small wave vectors it al-
lows for a propagating plasma mode with a phase ve-
locity given by

cd = ccG + ( nq/ n) c» (8)
In most cases the phase velocity c» is much larger
than ccG, in which case the plasma oscillation follows
from

o)2 —c2 k2+i (cu/cud) c2 k2=0
The damping of this propagating plasma mode is re-
duced when the temperature is lowered. This differs
from the CG mode and is related to the fact that no
counteroscillation of supercurrent and normal current
is required. For the same reason also the conversion
processes turn out to be rather ineffective as a damp-
ing mechansim. At large wave vectors we find again
the Carlson-Goldman mode with its usual dispersion.
It is unaffected by the restricted geometry.

The dispersion relations for both modes are depicted
in Fig. 1. The temperature is close enough to T, that
the frequency window for the CG mode,
cud & c0 & 2b, /ir, exists. In contrast, the plasma mode
exists for all frequencies up to c0d. The figure shows
the typical situation where the phase velocities are very
different (note the change of scale).

For thin superconducting films of thickness d, in
particular in those with high sheet resistance, similar
plasma oscillations are possible. Here the F function
of Eq. (4) is F= I+2m/kd. Hence for kd « 1 the
dispersion relation is co~ k' and the damping can be
very small. In normal-metal films a similar dispersion
relation has been derived, but here additional damp-
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FIG. 1. Range of existence of propagating plasma (PP)
and Carlson-Goldman (CG) modes near T, At lower tem-.
peratures cod exceeds 2b, /ri. and no CG mode is possible
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ing processes are present.
In Table I we list some explicit numerical values for

two typical samples. The first is a conventional small
strip; the second is approaching the limit of what can
be made with confidence with present-day technology.
The phase velocity c» depends on the size of the sys-
tem, concentration, and temperature. For the exam-
ples chosen it is large, though small enough in com-
parison with the speed of light to allow us to ignore re-
tardation effects. A consequence of the large value of
c» is that the propagating plasma mode only exists at
long wavelengths, larger than a value A. ;„which fol-
lows from the restrictions on the existence of the
mode posed by both the damping and the energy gap:

c»27r X t„=cu,„=min(r0~, 2A/t ). (10)



Vor UME55, NUMmx1 PHYSICAL REVIEW LETTERS 1 JULY 1985

TABLE I. Predicted values for two typical examples. Assumptions made, both samples: T, = 1.5 K, vF = 1.3x 10 m/s,
p, H, (0) =1.4X10 T, C'=10 ' F/m; sample 1: S=3&&10 '4 m~, R„'=107 0/m, r~~=3&10 '6 s; sample 2: 5=10
m R„'=10 0/m, v; „=10 ' s

( 1010 s
—1) (10' m/s)

Ccg
(10' m/s)

~min ( & '/ C') "'
(kf1 )

I,
(p, A)

(/2) 1/2

(nA)

Sample 1

Sample 2

0.999
0.9
0
0.999
0.9
0

3.8
38
69
3.8

38
69

0.29
29

0.29
29

1.7
17
33
0.17
1.7
3 ' 3

2.5
8.0

14
1.5
4.6
7.8

3700
370
300
370

37
30

5.9
0.59
0.3

59
5.9
3.0

0.035
35

390
6.3x10 4

0.63
7.1

1.8
57

115
(0.6)
18
36

It is convenient to define parameters as the effective
capacitance per unit length C' = e/( 2!n (1/krp) ), the
kinetic inductance per unit length L' = m/(n, e S), and
the normal-state resistance per unit length
R„'= (a-„S) ' with S the cross section. The velocity
of the plasma mode is essentially given by
c~2~ = (L'C') '. If in addition R~ is defined as
R„'a-„/a.~, the damping is characterized by cod
=R~/L'. The introduction of electric circuit parame-
ters makes the extension to noncylindrical geometries
obvious. We ignore the weak dependence of C' on k.
For the usual arrangement of a strip on a substrate, e
is given by the average of the values for substrate and
vacuum. In Table I typical values for C' are chosen.
Similar equivalent-circuit parameters for the CG mode
have been indicated by Kadin, Smith, and Skocpol. 7

We now will derive the relations given above. Both
in the normal metal and in the superconductor we
solve Poisson's equation in the cylindrical geometry to
find the relation between the charge density and the
electric field, considering a quasistationary situation.
The charge density is composed of a bulk part that is
homogeneously distributed over the cross section and
a surface charge. We assume a harmonic variation
along the z direction characterized by k. Then the ra-
dial distributions of p and Vare given by

«)(«p)
p(r) = pp 0(rp —r)+, , a(r —rp),

4mpp E'o(kr)
V(r) =, e(ro —r)+ e(r —rp) .

&o kro

In the normal state, we combine these solutions with
the continuity equation and the acceleration equation
for the current,

ne
t m

Integration over the cross section yields Eq. (1).
In a superconductor we have both a quasiparticle

current and a supercurrent. The latter can be
parametrized by j,= en, v„where n, is a temperature-
and impurity-dependent transport coefficient and v,
satisfies the acceleration equation ir, = —m

where 4, = p, , + e V is the Cooper-pair electrochemical
potential. The quasiparticle current j„ is driven by the
electric potential, j„=—a.~'7 V, because the shifts in
the normal chemical potential are small in comparison
with eV. Thus the continuity equation can be written
as divj, —o-„'7 V= —p where p is the total charge
density. The supercurrent and superfluid chemical po-
tential also satisfy the relation

divj, + eX,
t
+r,-„' p, , =o,

which has been derived in the appropriate limit from
microscopic theory. It can also be made plausible in
the two-fluid-type description introduced by Pethick
and Smith. 9 The essential feature there is to introduce
two separate continuity equations for the superfluid
and normal components which are couple by conver-
sion processes'.

dtvj„+ p„= —Q'/r ~, dtvg, + p, = Q'/rg~

The normal and superfluid "charge densities" are re-
lated to the chemical potential shifts by p„= eX„p,„
and p, = eX,p, , where the X's are generalized suscepti-
bilities satisfying X„+X, = 2N (0) and the limiting
forms of X, were given before. The sum of p„and p,
is the total charge density. The conversion is propor-,
tional to the charge imbalance Q'= eX„(p,„—p, ,).
The conversion rate I/r is given by (X,/X„)w,„',
reducing to mb/4kBTr;„near T, . From these relations
it is straightforward to obtain Eq. (11).

Finally, we close these relations by the solution to
the Poisson equation, as given above, and obtain the
complete dispersion relation of the superconducting
filament, Eq. (4).

The derivation outlined above correctly reproduces
the essential features of the collective mode. The
more detailed microscopic analysis shows that there
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1 1 t 2A

m L, 'g 4 h
T=0.

exist corrections of order tcu/2A and additional damp-
ing mechanisms due to the excitation of quasiparticle
degrees of freedom. In the case of the Carlson-
Goldman mode this analysis has been performed in
the pasts and quantitative modifications of the disper-
sion relation have been found. On the other hand,
this analysis showed that as long as we can ignore non-
linear effects and as long as the frequency is not close
to or larger than the gap, 8 to « 2A, these corrections
are small. In particular there exists no strong damping
due to the excitation of particle-hole pairs.

There are several ways in which the existence and
the properties of the propagating plasma mode can be
investigated experimentally. Because the mode con-
tains an oscillation of the total current and charge
density —in contrast to the Carlson-Goldman mode
where the total charge density remains constant —it
should be relatively easy to couple to. As noted be-
fore, the wavelengths are relatively long so that the
finite length of the sample in many cases will limit the
number of allowed modes. We can put this to our ad-
vantage by measuring resonance frequencies as a func-
tion of sample length to determine c». The modes can
be excited and detected by means of small local probes
which act as ac current or voltage sources. Josephson
coupling or capacitive coupling can be used. As the
plasma mode also involves oscillations of the phase,
the detection method as used by Carlson and Goldman
is conceivable too. Their CG mode could only be ob-
served through the phase, by coupling to the phase of
another superconductor.

In a bulk superconductor phase fluctuations are
suppressed because of the associated charge fluctua-
tions and Coulomb interactions. In superconducting
thin films there is a possibility of enhanced phase fluc-
tuations associated with the formation of vortex pairs,
unbinding at the Kosterlitz-Thouless transition. ' In
the filament we also have significant phase fluctua-
tions, which stimulate the loss of phase coherence by
local phase slippage. We can estimate the amplitude of
current and voltage fluctuations simply by assuming
that for each k mode the energy is kB T at finite tem-
peratures and —,'hco(k) at T= 0. Locally the expecta-
tion value of the current due to the propagating plasma
mode follows from

(l~ )» = kit Trop, T T~,
1 1

s pp 7r t + p

Results are shown in the table. Notice that in the sam-
ple with small cross section (I2)' 2 becomes compar-
able to I„ in particular close to T, ." Near T„ the
current fluctuations due to the CG mode are much
larger, in particular because ccG is considerably smaller
than c» for practical samples. The power spectrum of
the voltage fluctuations is of the Johnson-Nyquist type
with an equivalent resistance (L'/C')'i2. This value is
also quoted in the table. It is independent of the
length of filament considered, and one might think
that it could exceed the normal-state resistance if that
length is very short. However, a length 3 imposes a
minimum frequency co;„=2m. c»/A. The white noise
occurs in the frequency range between ~;„and co~.
As A is decreased, co; increases to become equal to
co& just when (L'/C')' approaches the normal-state
resistance AA„'.
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