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Numerical simulations of a simple model for ideal magnetohydrodynamic modes have shown sta-
tionary turbulence and transport at 8 values substantially below the critical 8 required for linear in-
stability. The phenomena appears to be similar to subcritical turbulence in plane-parallel pipe flow.

PACS numbers: 52.30.Gz, 52.35.Ra

A system with self-sustained turbulent motion hav-
ing a parameter below the critical value for the onset
of linear instability is said to exhibit ‘‘subcritical tur-
bulence.”’” In this Letter I report on numerical simula-
tions of a simple model for magnetohydrodynamic
(MHD) ballooning modes which has homogeneous
stationary-state turbulence with large transport at
values of B (ratio of plasma to magnetic pressure) sub-
stantially below the critical 8 for linear stability. At
low to moderate 3, it is generally believed that short-
wavelength dissipative modes of one kind or another
are linearly unstable and are the prevailing cause of
turbulent energy transport in tokamaks and other
fusion devices. However, the onset of longer-
wavelength MHD modes (usually called high-n bal-
looning modes) at the critical 8 is expected to result in
such large mixing lengths and therefore large transport
rates as to completely limit the 8 and the energy con-
tent of the tokamak plasmas. Thus evidence for possi-
ble subcritical turbulence among these catastrophic
ideal MHD modes is of great practical interest.

Subcritical turbulence is a well-known feature of
several (but not all) types of hydrodynamic flows.!
The best understood case is that of plane-parallel
(Poiseuille) pipe flow.23 Both experimentally and in
numerical simulations, the flow becomes turbulent at
values of the Reynolds number several times smaller
than the critical value for linear instability. In what
follows, I shall make some partial but hopefully useful
analogies with the case of pipe flow. Established ex-
amples of subcritical turbulence from plasma physics
are more recent and less well known.* >

For the case at hand, the simple homogeneous two-
dimensional MHD model assumes that each mode la-
beled by its wave number k, across the magnetic field
balloons to the bad-curvature region on the outside of
the tokamak. Ignoring the potentially important role
of shear in the magnetic field direction and the three-
dimensional aspects of the ballooning modes, we as-
sume that each mode has a fixed effective average
parallel-field wave number k corresponding to an in-
verse connection length Rqg and an effective average
curvature dnft g equal to L /R times the diamagnetic
drift. L, ! is the inverse equnhbrlum pressure-gradient
length Wthh drives the modes, R is the tokamak ma-
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jor radius, and ¢ is the safety factor. The model con-

sists of a vorticity equation, an Ohm’s law, and a pres-

sure convection equation to advance the perturbations

m the electric potentlal ¢, the parallel vector potential
, and the pressure P:

d, 7 . s = .

—kidp=igw P —V  (k24,) —y2k? ¢y, (D
9 AV -

atAk“ _T(bk YAy, (2)
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The nonlinear mode couplings are contained in the
EXB, convective time derivative (8/8t+ V-V )
and the magnetic flutter of the parallel gradlent
(V,,+BL/B0 vy,

fk zk1xk2 € dx sz (4a)
VS = isik S +,32klxk2'€||Ak1fk2, (4b)
ky

where k;=k—k;. In these equations the ion gy-
rolength p,=c¢,/Q [where = (T,/m)V?* and
Q =eBy/cm;] is the unit of length across the magnetic
field By and L, is the unit of length along the field;
L,/c; is the unit of time. Thus, kK, =L,/Rq and the
diamagnetic drift frequency is w.=k,, where
k,=(n/qr )ps ! represents the poloidal wave number;
k. is the radial wave number. B=3p./(Bi/8w),
where p, is the equilibrium pressure. The fields are
normalized to p,/L, as follows:

The fields satisfy the reality condition f, =f; with
Sc=k, /Ik |. The transport coefficient describing the
EXBO dlffgsion _of pressure flux (vgp) is
(Dg) = (Skbiik,Pc) in units of ple,/L,. {...)
represents the time average.

To single out the linear ideal MHD ballooning sta-
bility, let us first set the damping terms represented by
the y terms equal to zero. There are three branches
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with frequencies w = + wyypx and w =0, where
omupx = (k{/B— gk k? )V ©))

They correspond respectively to polarizations qbk and
P2, such that

b=+, (6a)
~ Skk Ml ~ k
Ay =——( — +—=2 _po 6b
* Bomupx =i Sk k? k (6b)
- k - - -
P=—>—(¢ — b5 )+ P (6¢c)
WMHD, k

For B=Bu=ki/g= Lp/qu, the curvature drive g
(which causes an analog of the Rayleigh-Taylor over-
turning mode) exceeds the resistance to field-line
bending (k% /B), and all modes with k., =0 first be-
come unstable. In particular, modes with long
wavelength (k, — 0) become unstable. In all the ex-
amples treated here k;=0.1 and g=0.3, so that
Berit = 3.3%.

The damping terms require special discussion. A
standard model for resistive MHD would set
yid=mk?, where m is the classical resistivity, and
y®=uk? and yf=«kk?, where u and « represent the
classical cross-field ion viscosity and heat conductivity.
When 7 is sufficiently large compared to w— k as
would be physically the case, the system would be un-
stable to short-wavelength resistive g (or resistive bal-
looning modes) (see Waltz,® for example). They are
unstable at any B8 and in contrast to the ideal modes,
their driving rates vanish at long wavelengths
(k, — 0). To clarify the issue of subcritical behavior,
I have made the unphysical choice of setting
y®=yid=yF=vy2 This suppresses the short-wave
modes and leaves only the semi-ideal modes
o= *omupi—ivf and o = — iy which are damped
for B < B.ir- The model for v was taken to be

vo(1—k?2/k¢)+y,, for

ko< k, < ke,
k> ke,

k, <k,

Yi=1Ym for
Yo +vm for

With — K max < Ky, ky < kmax (Kmax=2.25). This con-
sists of a low-k damping (yo=0.1 to 0.5; k,=0.8) to
represent the damping via coupling to parallel ion
motion or loosely speaking the convective losses to the
plasma boundary, and a moderate-k damping
(y,,=0.0 or 0.05) and a high-k damping (y,=2.0,
k..=1.9) to represent the classical cross-field dissipa-
tion process. Other choices for the moderate- to
high-k damping (e.g., y#=puk?2) do not change the
results. Sufficient low-k damping is essential to avoid
complete condensation in the longest wavelengths and
lack of stationarity.

Before presenting the results of the simulation, it is

useful to write some conservation laws of the system.
There are laws for energy and square of the pressure:

d

T EEk = gDy — 22y 0E,, (7a)

. A S BP /2= Dy~ 32y LBEB2, (7b)
k

where E, = (k2 iy +Bk2A}4,)]2. Similar laws can
be written for the magnetic potential EAk Ay and cross
helicity 3¢5 A4,. From the time average of (7b), it is
clear that one cannot speak of stationary-state tur-
bulence and transport without dissipation in the pres-
sure equation, yf=vyf ((Dg) = SyF(1P|?)). Com-
bining Eqgs. (7a) and (7b) results in

d
_ W p—
dt % «
where

Wi=(k? $ids +Bk2AS Ay —

- 22’)’3 Wk’ (7C)
k

ng*Pk )/2

It is clear that for g < 0 and thus W, > 0, a nonlinear
stability theorem results and no turbulence can be sus-
tained.

The simulations were performed on a 31x31 grid
(Ak =0.15) with use of an implicit time step for the
advancement of the linear terms and a predictor-
corrector for the nonlinear terms. There were typically
more than several hundred time steps over the fastest
wave period ( — 10 time units at 8=2.5%). Cumula-
tive errors in total energy conservation [Egs. (7a) plus
(7b)] were below 1% and no significant changes were
observed for time steps 2 and 4 times smaller. Time
averages were taken over several hundred time units.

The principal result is shown in Fig. 1 for the mar-
ginal damping case y,, =0 with y,=0.5. As shown,
the transport persists well below the linear critical
point. No evidence for hysteresis was found, i.e., the
stationary states presented may be approached from
many initial conditions. Also shown is a case with
g < 0 having no turbulence in accord with the non-
linear stability theorem of Eq. (7¢). The mixing rule

P~ (1/k )ms is roughly satisfied with (1/
k,)ms— 1. The spectra are roughly isotropic. As the
low-k damping 7, is diminished, more condensation in
the longest wavelengths is allowed [(1/k,);ns in-
creases] and the transport increases dramatically
beyond B > + B Figure 2 shows that the subcritical
turbulence persists in the damped case y,,=0.05 at
least for B8 > %ch. These cases require some suffi-
ciently strong perturbations to initiate them. The ten-
dency for the onset of long-wavelength condensation
and catastrophic transport at g > %,ch was a general
feature of similar two- and three-fluid models with
linear dissipative instabilities treated in earlier work.5
In reality the dissipative instabilities could easily pro-
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FIG. 1. Transport coefficients vs 8 for the marginal

damping case (y, =0.0).

vide the excitation to initiate the ideal subcritical tur-
bulence. As the damping is increased to y,, =0.10 and
0.15 the subcritical onset is less pronounced.

While long-wavelength condensation is clearly a
phenomenon of systems with large numbers of waves,
the basic mechanism for nonlinear instability can
operate even in a three-wave system. In particular,
Egs. (1) through (4) simulated with a triplet represen-
tation k= +{(1,0);(0,1);(~2,v/2)} of equally
damped waves, yf=7v,, =0.05 to 0.10, exhibit subcrit-
ical chaotic motion (strange attractor) provided that
sufficient initial excitation is given. An order-of-
magnitude smaller time steps and longer simulation
times may now be used. A larger damping rate
(ym =0.2) destroys the effect, while an intermediate
rate (y,,=0.15) allows nearly stationary chaotic
motion which can ‘‘sputter off.”” After a linear damp-
ing period, the system evolves to the W = 0 state [see
Eq. (7¢)] since all y¢ are equal In addition,
(DY =2y {E)/g =y,PLs from Egs. (7a) and (7b).
(D) =2 is weakly dependent on 8 up to B< B
where it increases dramatically. ‘‘Turning off’’ the
nonlinear terms in midcourse allows the system to de-
cay at the linear rate.

Some aspects of the subcritical turbulence seen here
may be understood by application of the ideas which

—iwk? ¢y =igw Py — ik sgk 2 A, — vk} i
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FIG. 2. Transport coefficients vs 8 for the damped case
(ym >0.0).

have served so well in explaining plane-parallel pipe
flow.>3 In that case one looks for secondary equilibria
(or near equilibria) which can be shown to exist down
to the lowest Reynolds numbers at which the tur-
bulence is observed in experiments and simulations.
The secondary equilibria are two-dimensional coherent
motions superposed on the straight streamline motion
of the primary equilibria. They are then shown to be
violently unstable to three-dimensional perturbations.
In general, for the MHD model it is difficult to find
the secondary equilibria. This requires the solution of
the nonlinear algebraic equations formed by setting
d/dt =0 (or ic-k) in Egs. (1) to (4). Even in the trip-
let case this is a system with eighteen degrees of free-
dom (less two phase angles) and no solution has yet
been found. However, in the many-wave case with
marginal damping v,, =0, each linear o =0 wave with
ko< k, < k., is a separate equilibrium. (Note that a
single linear wave can be a solution to the nonlinear
equations.) It is straightforward to test for linear insta-
bility about such a secondary equilibrium acting as a
pump wave with wave number k and strength Pko.
From Eq. (6) the pump has h

b =0, Ag=keP/sk k2,

ard 13,_(=13,_(0. A coupled linear eigenvalue problem
results:

—BKXk‘E”[(k —_Ig)z—l_Cz]jk_l_( ~l_c +IBK><k'€|| [(k +I_()2_,_(2]Zk+l_(’il_:’ (83)
_i“’jk= - (ik||/B)Sk<7>k—‘>’lg :I_c‘ka‘ € (<7>k-_ ~/_<_§>k+/_c/i/_c*)’ (8b)
—iwPy = _iw*‘Zk_Ylgﬁk_l_(xk'fn(J’k—l_cﬁk“(Zk+l_cpk*)- (8c)

1100



VOLUME 55, NUMBER 10

PHYSICAL REVIEW LETTERS

2 SEPTEMBER 1985

k
Y w=07163=0 (a)
—o 1
¢ 2
0.10
93
4
4 k
X
Ko Kmax
¢5
¥
0.05 —
(4,2) PUMP
Iu=0.5
=0 =0, B=15%
T ¥,,=005 B
k” =0.1
0
0
P 0.5 |
PUMP
DIRECTION
1 | |
0 1 2 3%

B

FIG. 3. (a) Secondary-instability growth rate vs pump-
wave amplitude strength. T_he lowest pump direction (P;_c)
and mode wave function (15,_‘) are shown in the inset 7x7
grid as the arrow and the triangles with relative weights,
respectively. Circles indicate boundaries of low-k (ko) and
high-k (k) damping. (b) Pump-wave strength vs g8 for
damped case.

(Without loss of generality we can choose the phase to
be PO=P% =i|P2|.) If the number of modes is re-
duced from 31x31 to 7x7, matrix inversion for the
solution of Eq. (8) is easily managed. A pump wave in
the k, direction is most effective. As shown in Fig.

3(a), an infinitesimal pump strength is sufficient to
produce instability (at all but the smallest 8). The
lowest eigenfunction and pump are shown in the inset.
This appears to be sufficient to explain the existence
of turbulence at all 8 in the marginal damping case
vm =0 of Fig. 1. As damping is added in the region
ko< k, < ks (y,=0.05), the pump wave must ac-
quire finite amplitude to drive the system unstable.
Figure 3(b) shows that pump waves in other directions
require larger strengths. In the damped case, howev-
er, the single w =0 linear wave pump is itself damped
and does not represent a secondary equilibrium. A
nonlinear state is required.

In summary, a simple two-dimensional model for
MHD ballooning modes has shown subcritical tur-
bulence. In partial analogy with the theory of plane-
parallel pipe flow, the result appears to be consistent
with instability about a zero-frequency wave acting as a
secondary equilibrium at least in the limiting case of
marginal damping. The propensity for sudden onset of
long-wavelength condensation and catastrophic trans-
port at 8 > —;-ch is the most important feature of the
subcritical turbulence. Unlike the pipe-flow case, the
critical threshold remains unexplained in general. It is
my hope that the present work with a very simplified
two-dimensional homogeneous model will motivate
the search for subcritical turbulence with more physi-
cally realistic three-dimensional boundary-value MHD
simulation codes.
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