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Turbulence in a Cylindrical Container of Argon near Threshold of Convection
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We present measurements and pattern visualization of convection in a cylindrical container at
low Prandtl number. We demonstrate that the weak turbulence previously detected in this situation
is clearly an erratic wandering of rolls. We show that the transition from a stationary to a time-
dependent pattern involves spontaneous nucleation of dislocations. We analyze this phenomenon
in relation to the skewed varicose instability.

PACS numbers: 47.25.Qv, 47.20.+m

The transition to time dependence in Rayleigh-
Benard convective patterns which are not spatially
forced is still far from understood. In low-Prandtl-
number Np, fluids (Np, = v/K, where v is the kinetic
viscosity, and K is the thermal diffusivity), experi-
ments performed at cryogenic temperatures' on liquid
helium (O.S (Np, ( 0.8) reveal time dependence at a
Rayleigh number NR, slightly above the convec-
tion threshold NBA (specifically, NR, = 1.1 Nft, ),
where a stationary roll pattern is expected (NR,
= ng 8 Td /vs, where n is the thermal expansion coef-
ficient, g is the gravitational acceleration, and 8 T is the
temperature difference applied to the fluid layer of
depth d). Unfortunately in these experiments, con-
trary to those performed at room temperature, the as-
sociated patterns could not be visualized. Although
surprising, these results were confirmed by further
cryogenic experiments, and investigations in mercury
at Np„=0.02S demonstrated that these time-dependent
states were related to pattern instabilities favored by
small Prandtl number and cylindrical containers.

On the other hand, in convection experiments per-
formed at room temperature with fluids of high
Prandtl number (see Berge ) turbulence is thought to
occur only at much higher NR, —on the order of
several times %R,—and appears as a complicated pat-
tern after the growth of a secondary instability. At
lower NR„ the pattern, now composed of rolls, often
displays a long transient evolution involving defect
motions before reaching a stationary and imperfect
structure. 6 This transient evolution suggests that a
lowering of Xp, might result in sustained erratic
wandering of roll patches, called phase turbulence. 5

Erratic wandering of rolls slightly above the convec-
tive threshold has recently been reported in water at
Np, = 2.5 and S. There, the time dependence observed
in the pattern does not greatly affect the heat flux, and
disappears when NR, is increased. Since at Np,
= 0.7 ' time dependence not only persists but ac-
celerates with NR„and is significantly reflected in the
heat flux, the observations in water do not completely
elucidate experimental results at lower Prandtl
numbers.

We have performed experiments at room tempera-

ture using argon whose Prandtl number NP, =0.69 is
comparable to that of liquid helium. We have
designed the apparatus so that we are able to measure
the total heat flux transported by the convective layer.
Moreover, working at a pressure of 30 bars, we have
been able to visualize the convective pattern.

We have studied a cylindrical container with an as-
pect ratio I'=R/d equal to 7.66. In agreement with
cryogenic experiments we found that, just above
threshold, the convective pattern is stationary and we
show that it is composed of straight rolls. At e = 0.14
[e = (NR, —NR, )/NR, ], the pattern becomes time
dependent through the occurrence of spontaneous nu-
cleation of dislocations. This evolution is first periodic
and rapidly becomes chaotic as we increase e. The roll
pattern then wanders erratically, exhibiting phase tur-
bulence. We analyze the mechanism of this tur-
bulence and observe that the roll diameters vary within
a wide range bounded by the occurrence of dislocation
nucleations for small rolls and by the appearance of
small perpendicular rolls for large rolls. At higher e,
we observe the onset of oscillatory instability superim-
posed on the phase turbulence.

The visualization technique that we use relies on the
usual shadowgraphic method, based on light-beam de-
viation induced by refractive-index gradients which
result in turn from the temperature modulation in the
convective layer. Since NR, grows like the square of
the gas pressure (via v and ~), the depth of the cell d
may be reduced while keeping the critical temperature
hT, constant by increasing the pressure. This property
is very advantageous since decreasing d magnifies the
index gradients and facilitates the optical treatment of
large —aspect-ratio containers. In particular, with a
pressure of 30 bars we are able to use a depth of only
1.S mm while retaining a critical temperature differ-
ence of 5.1 K.

The container consists of a Plexiglas ring 1 mm
thick with an inner diameter of 23 mm, whose thermal
conductivity is 9 times greater than that of argon. The
vertical and horizontal diffusion times are short:
v-„=3s and ~z ——150 s. The cell is sandwiched be-
tween a thermally regulated sapphire plate at the top
and a copper mirror in contact with an electrical heater
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at the bottom. This apparatus is placed in a pressur-
ized vessel which is provided with a thick glass window
for visualization. To avoid radiative losses, the copper
mirror and its heater are surrounded by a thermal
shield maintained at the same temperature. The
power supplied by the heater then passes only through
the convective layer and the container sidewall. In a
preliminary experiment performed under vacuum, we
have measured the sidewall contribution, in order to
accurately determine the Nusselt number. We shall
describe our apparatus in detail elsewhere.

Near the threshold, up to a=0.2, the convective
pattern appears to be uniquely determined by ~. At
the threshold, it consists of straight and stationary rolls
with identical widths [Fig. 1(a)]. The wave vector of
the pattern is well defined and its value k = 3.15 + 0.15
is close to the critical value.

When e is further increased, the rolls progressively
bend, tending to become perpendicular to the sidewall.
The structure, still stationary, then contains two focus

(a)

singularities as can be seen in Fig. 1(b). However, the
roll diameters are no longer uniform so that only a lo-
cal wave vector can be defined. We find its max-
imum value to be in the center of the ce11 and its
minimum near the sidewall. The width of the wave-
vector distribution of this stationary structure in-
creases with e (see Fig. 2), and at a=0.14 the local
wave vector reaches the value of 3.6 in the center of
the container. Then, as is shown in Fig. 1(c), two
dislocations nucleate spontaneously there, as the result
of a sudden pinching of the roll. They climb rapidly
along the roll towards the sidewalls but eventually
glide towards the focus singularities [Figs. 1(d) and
1(e)], where they disappear. The structure then re-
laxes to its initial state [Fig. 1(b)], as the focus singu-
larities continuously generate new rolls. The same
process may thus take place again, and indeed, no sta-
tionary structure could be found at higher e. The way
that the dislocations annihilate depends strongly on e
and rapidly becomes aperiodic. Each occurrence of
dislocations, whether in a periodic or chaotic regime,
produces a sharp peak in the heat flux, as shown in
Fig. 3. This time-dependent behavior is, we believe,
that observed in liquid helium. ' The transition to
chaos is very sensitive to the pattern features. For ex-
ample, the characteristic period has the value 10m-z at
e = 0.14, but the value 35~& at e = 0.18 where the pat-
tern consists of fourteen rather than fifteen rolls.

As we increase e beyond 0.2, one dislocation
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FIG. 1. Shadowgraphic pictures of convective patterns:
(a) e = 0.05. Stationary straight-roll pattern. (b) —(e)
&=0.14. Description of one period of oscillation involving
dislocation nucleations. The arrows in (b) indicate the
center of focus singularities. (f) e = 1. Beginning of roll
pinching occurring in a skewed manner on four adjacent
wavelengths. (g) e = 2. Small perpendicular roll pairs grow-
ing on a large roll in the center of the cell. (h) e = 3. Simul-
taneous occurrence of small role pairs near dislocations and
roll pinchings. Notice the symmetry of this pattern. (i)
e = 4. Oscillatory instability affecting relatively straight large
rolls.

FIG. 2. Approximate roll-diameter distribution. The hor-
izontal coordinate is given in units of 7rl/d (l is the roll di-
ameter) and coincides with the wave-vector definition for
straight rolls. For a given e, we have drawn a dotted line
between the maximum and the minimum value determined
from photographs. When an instability occurs, we have
symbolized it by two letters (SV, skewed varicose; CR, cross
roll; OS, oscillatory). As an indication we have reproduced
the instability boundaries predicted for straight rolls (E, Eck-
haus; M, marginal). This diagram is approximate since the
roll diameters are measured on nonstationary patterns.
However, we have also measured the evolution of the roll-
diameter distribution vs ~ on stationary and regular patterns
as may be seen in the enlarged view of the threshold vicin-
ity.
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FlG. 3. Nusselt measurements: (a) Nusselt-number
recording vs e during a slow decreasing ramp in the thresh-
old vicinity. Above a=0.14 the recording is time depen-
dent. (b), (c) Nusselt recordings vs time in (b) a periodic re-
gime, e = 0.14, and (c) a chaotic regime, e = 0.25.

remains longer in the cell, often trapped at the
sidewall, and sometimes succeeds in creating a third
small focus singularity. As a result, the structure
evolves chaotically through competition between pat-
terns with two or three focus singularities. More gen-
erally, when e is greater than 0.2, many topologically
different structures appear successively at the same e.
The major events responsible for this time dependence
are roll pinchings giving rise to spontaneous disloca-
tion. nucleations. These sudden events are separated
by slow pattern relaxation.

A striking feature of these patterns is the large dis-
tribution of roll diameters, which increases with e.
Focus singularities "generate" rolls and thus tend to
decrease their diameter until pinching occurs on the
smallest rolls. However, starting at e = 1, pinching af-
fects several wavelengths simultaneously. Moreover,
it occurs obliquely with respect to the roll orientation
[Fig. 1(f)], reminiscent of the skewed-varicose insta-
bility of Busse. Meanwhile, for e =- 2, a new mechan-
ism of structural change also appears for the large-
diameter rolls: Small roll pairs may grow perpendicu-
lar to them [Fig. 1(g)]. We interpret this as a localized
cross-roll instability. This instability, which can cause
grain boundary nucleation, frequently occurs at dislo-
cations [Fig. 1(h)].

For e greater than 2, the roll-diameter distribution
may be so large that a structure may simultaneously
display both the skewed-varicose —and cross-roll —like
instabilities. Finally, beyond e = 3.5, the oscillatory
instability appears as waves propagating on relatively
straight rolls of large diameter, typically with a fre-
quency of 1 Hz and a wave vector of ko = 2.5 as seen
by VA'llis et a/. ' As the pattern is already highly tur-

bulent this instability only adds some high frequencies
to the dynamic.

In cylindrical containers with liquid helium, Behr-
inger and Gao have inferred that the onset of time
dependence coincides with the lowest (in e) point of
the skewed-varicose instability boundary. In water,
Gollub et al. " have also shown how this instability
leads to time-dependent patterns. At the onset of time
dependence, we observe that under the strain of the
focus singularities, the local wave vector in the center
of the cell reaches roughly the skewed-varicose insta-
bility boundary (see Fig. 2). This route to turbulence
is consistent with the predictions of Cross and
Newell' and, in our experiment, involves periodic nu-
cleation dislocations. Despite the fact that this
mechanism cannot be regarded as the pure skewed-
varicose instability defined for an infinite straight-roll
pattern, Clever and Busse have already recognized it as
the end result of the skewed-varicose instability. ' We
explain how the wave vector attains the unexpectedly
high value of 3.5 necessary to reach the skewed-
varicose instability boundary, via a large distribution of
roll diameters.

We found this distribution especially large compared
to that observed at higher Wp, ." This effect already
appears for our stationary patterns and increases with e
so that the wave-number distribution finally fills the
entire width of the Busse balloon. According to Clever
and Busse' the skewed-varicose instability should act
as a wave-number-selection mechanism bringing the
structure back inside the balloon, where the pattern
should be stationary. Since, moreover, our patterns
are turbulent inside this balloon, we doubt that a well-
defined wave number is selected in our experimental
situation.

To our knowledge there is no clear explanation of
this turbulence, but only indirect approaches. Since
the skewed-varicose instability is involved, large-scale
flows are expected, as stressed by Cross. ' Indeed,
Zippelius and Siggia have demonstrated theoretically
that the stability of roll structures is drastically modi-
fied by these flows. '5. This has been illustrated by
Manneville in a numerical simulation': The disloca-
tion nucleations are preceded by a convergence of
these flows. Moreover, the texturelike structure he
observed at high Ãp, relaxes to a straight-roll pattern
when A'p, is decreased. This last point coincides well
with the simplicity and the uniqueness of our station-
ary patterns observed up to e = 0.14. Manneville also
suggests that this turbulence might be due to frustra-
tion between the large-scale flows and the convective
structure linked to the cell geometry. Following these
authors, we think that the large-scale flows might be
related to the spread in the roll diameters giving rise to
time dependence when a boundary of the Busse bal-
loon is reached. We believe that this relation between
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wave-vector distribution and large-scale flows has not
yet been pointed out. Our hypothesis is supported by
the similarity of their behavior in e and Xz, .

In light of the findings in rectangular containers'
where this kind of turbulence does not seem to occur,
further study of the influence of the container sym-
metry, such as that in Ref. 4, would be fruitful.

In conclusion, we have shown that a nonperturba-
tive visualization method is possible for low-Prandtl-
number convective patterns. %'e have determined the
mechanism responsible for turbulence occurring close
to the convective threshold in a cylindrical container
with I = 7.66. We emphasize the unusual roll-
diameter distribution, and the role played by the
skewed-varicose instability leading to spontaneous
dislocation nucleations and thus to time dependence.
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