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Crafted Pulses for the Uniform Suppression of a Region in a Coherent Spectrum
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We have theoretically derived and experimentally demonstrated ‘‘narrow reject’’ pulses which
give a uniform /2 excitation off resonance, and zero excitation in a sharp hole directly on reso-
nance. They are also insensitive to relaxation effects. This shape is symmetric and has only ampli-
tude modulation, and so it can be implemented on most commercial NMR spectrometers or with
laser modulators. It can replace conventional broadband /2 pulses in most NMR or laser pulse se-
quences, in order to give solvent suppression or measure spectral diffusion.

PACS numbers: 42.60.—v, 33.25.—j

We report a method, readily applicable to pulsed
NMR or coherent laser spectroscopy, for suppressing a
range of frequencies in the middle of a uniformly ex-
cited spectrum, even when the excitation is sufficient-
ly strong to make linear-response theory inaccurate.
This method relies on the use of modified or crafted
pulse shapes, and has several advantages over those
previously reported.I"* This single ‘‘narrow-reject’’
pulse maintains undistorted intensities and phases in
the excited spectrum, produces a uniform hole, and
compensates for 7; and T, relaxation. Such pulses are
likely to be extremely valuable in such fields as biolog-
ical NMR, where suppression of the water peak is
necessary to observe much weaker protein signals.
They also provide a powerful tool in laser spectroscopy

for measuring spectral diffusion processes, such as
velocity-changing collisions in a gas.’

These pulse envelopes are based on polynomials
multiplied by the difference of two Gaussians. In our
previous work®’ we demonstrated pulse shapes which
retain phase coherence, give a uniform 90° or 180° ro-
tation of magnetization (or pseudopolarization, the
equivalent mathematical construct for an optical sys-
tem) over a specified frequency range, and produce lit-
tle effect outside of that range. We found these sim-
ple, symmetric, single-phase pulse shapes (a quadratic
equation multiplied by a Gaussian) by a new and rap-
idly convergent perturbation expansion which corrects
for even the gross nonlinearity of m-pulse excitation
(complete inversion). Assume that the pulse shape is
described by the function ;(#), and extends from

=—T/2to t= +T/2. Define

Pin(0) =exp(—iAwl, T/2)p(—T/2)exp(+iAwl,T/2), pg,(0) =exp( +iAwl,T/2)p(T/2)exp( —iAwl,T/2),

where Aw is the resonance offset. p;,(0) is the density matrix which would have been observed at ¢ =0 if the
pulse had, in fact, been omitted, and pg,(0) is the final prepared density matrix translated back in time to ¢ =0.

Then
pin(T/2) = e~ Ap, (T/2)e* ™,

A=4P+4 V4 0Dy
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4 © s the Fourier transform of the pulse shape; 4 ()
is the sine Fourier transform of the pulse autocorrela-
tion function G (7). 4 ¥ and higher-order terms can
usually be neglected, as shown in Ref. 6. The pulse
shapes of Refs. 6 and 7 use the combined effects of
A©® and 4 to create a sharper inversion than
would be possible from Fourier-transform arguments
alone.

In this Letter we address the opposite problem: In-
stead of generating a narrow-band excitation with no
effect far from resonance, can we generate a broad-
band excitation with no effect near resonance? Start-
ing with our crafted narrow-band shapes, one quickly
comes up with two different approaches for such ‘‘nar-
row reject’”’ pulses. The first is to modulate the pulse
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with a sine or cosine wave, thus redistributing its
Fourier components to either side of the exact reso-
nance. But this approach disperses the autocorrelation
function (4 (V) as well, and thus does not tend to
give sharp edges. In addition, sine modulation gives a
180° phase shift upon crossing the suppressed region
(as do most of the standard water suppression se-
quences) and cosine modulation does not give the
pulse zero area (required for exactly zero excitation on
resonance).

The second approach is to center a strong and short
pulse on a weak and long crafted narrow-band pulse.
Since the time scales of the two pulses are very dif-
ferent the autocorrelation function is relatively simple.
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For experimental reasons we restricted ourselves to pulse shapes which could be adequately described by a 256-
point digital approximation. We started with the coefficients that we developed for 90° narrow-band pulses and
had a computer search the region around those coefficients.” The actual pulse envelope we used (Fig. 1) is

described by

(1) =11.017—0.333272+0.3719T*— 0.1488 T lexp[ — T?]

—[0.01700—0.005 5522+ 0.006 199:* — 0.002 4795 Jexp[ — %1,

where w;(?) is scaled to a maximum of 1. The coeffi-
cients with T give the short pulse, and the coefficients
with ¢ give the long pulse.

The pulse shape produces a spectrum which has a
hole in the middle with a width in hertz of
1.04/FWHM (full width at half maximum of the long
part of the pulse) and an excitation width which is
equal to (24 Hz2)/FWHM, over which the peak inten-
sities are distorted by less than 2% (Fig. 2). If one is
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FIG. 1. Narrow-reject pulse shape. This shape can be

viewed as the combination of two simpler #/2 pulses, each
of which is a polynomial multiplied by a Gaussian. The
short and strong pulse gives complete excitation off reso-
nance, but this excitation is canceled by the long and weak
pulse near resonance. The total area is zero.

T =60¢,

willing to have 5% distortion of intensities the excited
region has a width of (33 Hz?)/FWHM. The area of
the pulse is exactly zero so that the excitation on reso-
nance is always exactly zero, independent of rf homo-
geneity.

The theory used to generate and optimize this pulse
shape did not explicitly include 7, and 7', relaxation.
However, such relaxation normally plays a critical role
in determining the maximum pulse length. Thus, for
example, solvent-suppression sequences in biological
NMR have been generally limited to pulses of a few
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FIG. 2. Calculated excitation profile for the pulse shape
in Fig. 1. The pulse gives a complete /2 excitation with no
phase shifts over a wide region far from resonance, with no
excitation in a flat region near resonance. The frequency
scale may be adjusted arbitrarily by just a change in the pulse
length (see text).
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milliseconds duration, for two reasons. First of all,
rectangular pulse excitation gives distorted phases far
from resonance, but this problem is corrected by our
shapes. More significantly, if 7,=500 msec, 10% of
the water molecules will relax during a 50-msec pulse
sequence, and they will generally end up giving a
spurious signal because they saw only part of what
should have been a complete solvent-suppression se-
quence. However, it turns out that the excitation pro-
file from our pulse shapes is remarkably insensitive to
T, and T, effects. This can be understood by recogni-
tion that the high symmetry of the pulse shape guaran-
tees that for every spin that relaxes at time 7 after the
middle of the pulse (giving a nonzero value for (/) or
(1,) ) a nearly equal number will relax at time 7 before
the middle of the pulse (giving exactly the negative
values for (L) and (/,)). This insensitivity is veri-
fied by numerical solutions of the differential Bloch
equations with use of a predictor-corrector method®
with Ty =T, (Fig. 3). Relaxation times that are on the
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FIG. 3. Effects of T, and T, relaxation on narrow-reject
pulses. Even pulse lengths comparable to these relaxation
times give uniform excitation off resonance and zero excita-
tion directly on resonance. Minor shape modifications can
improve this profile further. This leads to substantial reso-
lution enhancement if the pulse is very long.
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order of 25 times the pulse length (FWHM) do not
perceptibly distort the excitation profile. Relaxation
times on the order of only 2.5 times the pulse length
(FWHM) caused nearly uniform, approximately 50%
attenuation in the signal, and the appearance of only
about a 0.25% excitation in the exterior two-thirds of
the suppressed region. This is a substantial improve-
ment which allows hole widths comparable to 7, and
T,, and gives resolution enhancement in crowded
spectra.

The single narrow-reject pulse was generated with a
256-point approximation as described in our previous
communication.” In essence, a pulse shape is fed to a
double-balanced mixer, which is inserted before the fi-
nal amplifier. The pulse was truncated at the level cor-
responding to 1/2048 of the maximum intensity of the
pulse. The spectra displayed in Fig. 4 were taken on a
JEOL FX90Q FT NMR, which for technical reasons
could not be made to give a pulse longer than 12 msec.
Suppression of the aromatic region of 3-bromopropyl
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FIG. 4. Experimental spectra of (3-bromopropyl)-
benzene at 90 MHz. We chose to suppress the entire
aromatic region, which has J couplings and a chemical shift
range. Solvent suppression is much easier. These phase-
sensitive spectra show no distortions in the aliphatic region.
The residual excitation on resonance is primarily due to am-
plifier nonlinearities, which could be corrected (see text).
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benzene was chosen as a sensitive test, since this re-
gion consists of multiple peaks. As can be seen, the
aromatic peak in the sample was almost completely
suppressed. No attempt was made to compensate for
amplifier nonlinearity, but this would certainly have
further improved the suppression. The excited spec-
trum has no measurable dispersive component or am-
plitude distortions, and agrees well with our theoretical
predictions.

Our results show that it is relatively easy to suppress
a region of the NMR spectrum cleanly without signifi-
cantly modifying the unsuppressed region of the spec-
trum and without having to worry about the relaxation
times of the sample, even if they are on the order of
the pulse length. The ease with which this method is
implemented and the quality of the results should
make it the method of choice for solvent suppression.
A more complete suppression of a region of the spec-
trum can undoubtedly be obtained with further adjust-
ments or a better spectrometer. For example, the abil-
ity to use more points on the digitized pulse not only
will improve the results, but will allow the strong part
of the pulse to be shorter in relation to the long part so

that a narrower part of the spectrum may be
suppressed while having uniform excitation over the
same broad region.
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