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Measurement of the Lyapunov Spectrum from a Chaotic Time Series
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The exponential divergence or convergence of nearby trajectories (Lyapunov exponents) is con-
ceptually the most basic indicator of deterministic chaos. We propose a new method to determine
the spectrum of several Lyapunov exponents (including positive, zero, and even negative ones)
from the observed time series of a single variable. We have applied the method to various known
model systems and also to the Rayleigh-Benard experiment, and have elucidated the dependence of
the Lyapunov exponents on the Rayleigh number.

PACS numbers: 47.25.—c, 02.50.+s, 05.45.+b, 52.35.Ra

The deterministic unpredictable behavior of non-
linear dynamical systems has become a very interest-
ing subject in many fields of science. Especially fluid
systems, for example the Rayleigh-Benard convection
system, provide one of the most challenging problems
to physicists, because they can exhibit not only chaotic
behavior with a few degrees of freedom accompanied
by some bifurcations, but also spatio-temporal irregu-
lar behavior (turbulence). In the case of low-order
chaos, how do the physical quantities of chaos grow
with increasing values of nonequilibrium parameters
or with the increasing number of degrees of freedom?
In the case of turbulence, how is it characterized in
terms of the theory of a dynamical system?

To answer these questions, detailed characterization
of the properties of the irregular behavior is required.
Therefore, it is strongly desirable to develop a power-
ful method which is applicable to many-dimensional
chaos to extract physical quantities from experimental-
ly obtained irregular signals. The basic quantities to
characterize chaotic behavior are the exponential
divergence of nearby orbits (positive Lyapunov ex-
ponents'), positive finite Kolmogorov entropy, and a
noninteger dimension of the attractor. ~ These quan-
tities are invariant under smooth transformation of
coordinates. There are several relations among these
quantities, and if the Lyapunov spectrum can be deter-
mined, the rest can be estimated as equalities or upper
or lower bounds. 6 8

To implement this procedure in an experiment, we
have to calculate a set of Lyapunov exponents, posi-
tive, zero, and negative ones, simultaneously. In re-
cent reports, two methods which can determine
Lyapunov exponents from a time series have been re-
ported. ' However, these methods have some limita-
tions; for example, the obtainable exponents are re-
stricted to be nonnegative, and the number of obtain-
able exponents is one or two. In this paper, we present
a new method by which one can determine a set of
several Lyapunov exponents, positive, zero, and even
negative, from the observed time series of a single
variable. This method was tested on various known
systems. We have also applied this method to the data

where A' is the linear operator which maps tangent
vector $(0) to ((t). The mean exponential rate of
divergence of the tangent vector g is defined as fol-
lows:

A. (x(Q), g(0)) = lim —ln
1 II g(t) II

t Ilg 0
(4)

where Il. . . ll denotes a norm with respect to some
Riemannian metric. Furthermore, there is a d-

dimensional basis {e;I of $(Q), for which A. takes
values A. ;(x(0)) = A. (x(0),e;). These can be ordered
by their magnitudes X~ ~ X2 ~. . . ~ Xd, and are the
spectrum of Lyapunov characteristic exponents.
These exponents are independent of x(0) if the sys-
tem is ergodic.

We often have no knowledge of the nonlinear equa-
tions of the system which produces the observed time
series. And even if we know the equations of motion,
such as the Navier-Stokes equations for fluid systems,
it is a hard task to derive the mode-truncated equa-
tions with finite degrees of freedom from partial dif-
ferential equations (which is the infinite-dimensional
system) and reproduce the same phenomena as the ex-
periment from them. ' However, there is a possibility

of the Rayleigh-Benard experiment and elucidated the
dependence of the Lyapunov exponents on the Ray-
leigh number for the case of intermittent chaos.

Let us consider an observed trajectory x(t), which
can be considered as a solution of a certain dynamical
system:

x =F(x),
defined in a d dimensional phase space. On the other
hand, the evolution of a tangent vector g in a tangent
space at x(t) is represented by linearizing Eq. (1),

j=T(x(t)) g, (2)

where T =DF = BF/Bx is the Jacobian matrix of F.
The solution of the linear nonautonomous Eq. (2) can
be obtained as
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minS =min —g llz' —Ajy'll (8)

Denoting the (k, l) component of matrix A, by aki(j)
and applying condition (8), one obtains d x d equations
tions to solve, BS/Ba«(j) =0. One will easily obtain
the following expression for AJ:

N
w. v=c, ( v)«= —gy'"y",

N,.

(C)ki= f Zkl

where V and C are d x d matrices, called covariance
matrices, and y'" and z'" are the k components of vec-
tors y' and z', respectively. If N ~ d and there is no
degeneracy, Eq. (9) has a solution for a«(j).

Now that we have the variational equation in the
tangent space along the experimentally obtained orbit,
the Lyapunov exponents can be computed as

A.;= lim
1

ln II Aj.e~ II,
n ~ nV

(10)

of estimating a linearized flow map A'of tangent space
from the observed data.

Let {xJ) (j=1,2, . . .) denote a time series of some
physical quantity measured at the discrete time inter-
val At, i.e., x~ =x(to+(j —1)ht). Consider a small
ball of radius e centered at the orbital point x, , and
find any set of points {xk) (i =1,2, . . . , N) included

in this ball, i.e.,
{y') = {xk —x~ [ II xk —x~ II «e}, (5)

where y; is the displacement vector between xk and

x, . We used a usual Euclidean norm defined as fol-
lows: Ilw II =(w&~ +wz2 +. . . +wd2)'i for some vec-
tor w = ( w&, w2, . . . , wd). After the evolution of a
time interval 7. = mAt, the orbital point x~ will proceed
to x, + and neighboring points fxk) to {xk ~ }. The
displacement vector y'=x„—x is thereby mapped to

{z')= {xk+~—xj+~) llxk —x, II «6). (6)

If the radius e is small enough for the displacement
vectors fy') and {z'}to be regarded as good approxima-
tion of tangent vectors in the tangent space, evolution
of y' to z' can be represented by some matrix A~, as

Z (7)
The matrix AJ is an approximation of the flow map A'
at xj in Eq. (3). Let us proceed to the optimal estima-
tion of the linearized flow map A; from the data sets
fy') and fz'). A plausible procedure for optimal estima-
tion is the least-square-error algorithm, which minim-
izes the average of the squared error norm between z'
and Ajy' with respect to all components of the matrix
A~ as follows:

for i =1,2, . . . , d, where AJ is the solution of Eq. (9),
and {e,) (i =1,2, . . . , d) is a set of basis vectors of
the tangent space at x~. In the numerical procedure,
choose an arbitrary set {e,). Operate with the matrix
AJ on {e,), and renormalize Aje,' to have length l. Us-
ing the Gram-Schmidt procedure, maintain mutual
orthogonality of the basis (see, e.g. , Shimada and
Nagashima' ). Repeat this procedure for n iterations
and compute Eq. (10). The advantage of the present
method is now clear, since we can deal with arbitrary
vectors in a tangent space and trace the evolution of
these vectors. In this method, these vectors are not
restricted to observed data points, in contrast with the
conventional methods. 9' The feature allows us to
compute all exponents to good accuracy with great
ease.

Our method was tested on various chaotic dynamical
systems to see if it can be used for characterizing an
experimental system such as the Rayleigh-Benard sys-
tem. For this purpose, a single variable of the model
system (e.g. , the x coordinate) was treated as experi-
mental data, except the Henon map, and then a d-

dimensional orbit was reconstructed by use of delay
coordinates, ' i.e.,

x;= fx(i~), . . . , x(i~+(d —1) td)),

where td is the delay time. We have not searched all
the points contained in the e ball, because it is time
consuming, but we set an upper limit to the number N
of points included. We proceed as follows: First we
choose an orbital point xj and search the points includ-
ed in the e ball from the beginning of the data file {x~}
(j=1, . . . , M). When the number of points found in
the e ball exceeds the upper limit we stop the search-
ing and proceed to solve Eq. (9). In the case that the
number does not exceed the upper limit, though the
data file is exhausted, if the number satisfies the con-
dition N ~d we proceed to solve Eq. (9), but if the
condition is not satisfied we abandon this point x~ and
go to the next point xj ~ . For the value of the upper
limit of N we chose 20 in this paper. It was confirmed
that lower values of the limit, e.g. , d «N «5 for the
system with d =3, gave similar results.

Figure 1 shows an example of the convergence of
Eqs. (10) for the Lorenz equations. '~ In Fig. 1 we plot
A. ; vs n v for 7 =0.05, d =3, td =0.13, e = (1.5% of the
horizontal extent), and d «N «20. Convergence of
A. ; is attained in an early stage of iterations. The varia-
tion of the spectrum obtained from our algorithm
when the parameters e, v, and td are changed is within
the values shown in Table I. It means that they are
very insensitive to the choice of these parameters.
The agreement with the known values is very good for
A.

&
and A.2. The next example is the Mackey-Glass de-

lay differential equation with a delay constant
T =30.'6'7 The estimated spectrum is in good agree-
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ment with the numerical results, again. It is worth
noting that the method gives not only two positive ex-
ponents, but also zero and two negative ones. For the
Henon map, ts with a =1.4, b =Q.3, we obtained two
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FIG. 1. Stability of the Lyapunov spectrum of the Lorenz
system for a special choice of parameters. The values of the
parameters are listed in Table I, except 7 =0.05, e/L
=0.015, and n =2000.

exponents (Q.408, —1.58). The error is within 1 —2%
for each exponent.

The possibility of measuring negative exponents
depends on their magnitudes and the signal-to-noise
ratio of the data. If contraction of the phase-space
volume is so strong that the thickness of the attractor
becomes smaller than the resolution of observation,
one never has information concerning the direction of
contraction. In such a case experimental noise gives
spurious zero exponents for those directions, because
the perturbation caused by noise is never contracting
nor expanding on average. An example of the above
situation is the Roessler system. '9 As shown in Table
I

~ X3 i is almost a hundred times greater than Xt . As a
consequence estimation of A3 was unsuccessful in this
case. Detailed analysis of the method and the effect of
noise will be published elsewhere. '0

Next we make a rough estimate of the amount of
data required by our method. For the sake of simplici-
ty, consider a strange attractor with the information
dimension D, and let L be the horizontal extent of

TABLE I. Lyapunov spectrum, estimated fractal dimension DK~, and Kolmogorov entropy for various systems. 5t is the
time step of numerical integration, n is the number of averaging in Eq. (10), and d is the embedding dimension. The error
bars for our algorithm are calculated from several runs with different parameters 6, 7, and td around the values listed below.

System Lyapunov exponents

(numerical results)
Lyapunov exponents

(our algorithm)

Henon map

(a=1.4, b=0. 3)

Lorentz equations

(R=40, o'=16, b=4, A t=0. 01)

Roessler equations
(a=b=0. 2, c=5.7, St=0. 12)

Mackey-Glass eqs.
(a=0. 2, b=O. l, c=lO,

T=30, bt=T/100)

Rayleigh —Benard exper iment

(I"=2.4, P ~5.7,R=40. 47R )r C

0.417+0.006 (Ref. 18)
-1.58 +0.006

K=0.417, D =1.26

1 » (Ref. 13)
0.00

22. 37

K=1.37, D =2.06

0.069 +0.003
-0.0002+0.0002

-4.978 +0.002

K=0.069, D =2.01
0.0071
0.0027

0.000
—0.0167
-0.0245

K=0.098, D =3.54

0.408+0. 003 (M=10000, n=l000
-1.58 +0.02 E. /L=O 01)

K=0.408, D =1.26

1.37+0.08 (M=4 F 10 , n=l000, d=34

-0.02+0.09

-15 2 +2 1
, T=O. l, r/L=0. 02)

0.0003+0.002 , I=1.2, c./L=0. 02)
—0.7 +0.3

K=0.073,
0.0074+0

D =2.1
4.0007 (M=2'10 ,n=400, d=5

0.0038+0.0007

-0.0015+0.0008

-0.017 +0.003
-0.042 +0.01

, x=24, c/L=0. 05)

K=0.112,
0.0103+0

D =3.58
ky

-o009 (M=4 10 , n=20, d=3

0.001 +0.001
—0.017 +0.001

, T=44. 8, E/L=0. 04)-

K=1.37, D =2.09

0.073 +0.004 (M=4 ~ 10,n=l000, d=34
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FIG. 2. The Lyapunov exponents for experimental
Rayleigh-Benard data as a function of Rayleigh number.
The embedding dimension is d =3 for all data except for the
data at the highest Rayleigh number (where d =4).

formula, s respectively. The results are in agreement
with the known values.

To conclude, by using the new method we could ob-
tain good estimates of the Lyapunov spectrum from
the observed time series in a very systematic way. Be-
cause of the ability of the method to measure several
Lyapunov exponents, positive, zero, and even nega-
tive ones, other important characteristic invariants
such as fractal dimension of attractors of Kolmogorov
entropy are obtainable with great ease. It is hoped that
the new method has wide applicability to systems
~hose dynamical equations are not available.

The authors would like to thank Professor Y. Takeu-
chi, Professor K. Miyano, Professor S. Usioda, Dr. M.
Matsushita, Dr. H. Honjo, and Mr. S. Sato for useful
discussions and suggestions.

the attractor and M be the total number of orbital
points. The number of points contained within the
bail of radius e among the total data points M is ap-
proximately X —(e/L)DM The minimum number X
required to solve Eq. (9) is equal to the dimension d.
Then the amount of required data M is given by
M & d(L/e) By t.he numerical test of our algo-
rithm, the permissible limit on the magnitude of e/L is
typically 3—5'/0, Therefore, in the case of d =3, D =2,
e.g. , the above estimate gives M &1200—4000, and
for d=4 and D =3, e.g. , M & (3-14) x104. The es-
timated amounts of data to measure or store are readi-
ly obtainable in typical experiments. '

We have also applied the method to experimental
data of the Rayleigh-Benard system. Our experimental
setup has been described elsewhere. ' The fluid was
water at 30'C where its Prandtl number is 5.5. We ob-
served intermittent chaos in a 2.4 x1.5 x1.0-cm3 layer.
Typical values of Lyapunov exponents obtained from
time series are presented in Table I. As shown in Fig.
2, in the vicinity of the onset of chaos we obtained the
Lyapunov spectrum of one positive, one zero, and one
negative exponent. We denote this type of spectrum
as +,0,—.With increase of the Rayleigh number the
spectrum was changed into +,+,0,—.This indicates
the appearance of hyperchaos. In the case of intermit-
tent chaos, the strange attractor is not always a homo-
geneous fractal, so that commonly used methods to
obtain the fractal dimension give no significant results.
We showed that even in such cases the present
method gives reliable estimates of the Lyapunov ex-
ponents. Detailed results will be published else-
where. 2o Finally, we show in Table I the estimations
of Kolmogorov entropy IC by a sum of positive ex-
ponents from the spectrum, and the of Kaplan-York
fractal dimension Dxv by the use of the Kaplan-York
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